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Background Aim and Approach

Aim: Robust, accurate Motion Estimation

Spherical cameras: 360 degrees in real-time

According to [1], using dense optical flow
IS highly robust and acccurate for small displacements.
Reason: Smoothing in variational optimization -> No outliers

Approach: Combination of sparse and dense information
Sparse Dense

Spherical Image S(x) Equirectangular Image I(u)

Effective at STM/VSLAM in enclosed, indoor spaces
Projected as distorted, 2D equirectangular images

Basic steps of SfM: 1. Track features
2. Triangulate 3D points 3. Track camera motion

However, strong distortion induces mistakes. s
=> Low robustness and accuracy Feature Points Dense Optical Flow

Large image No outliers,

displacements okay >< robust

Outliers, Complementary Large displacements
low robustness information not okay

Distortion
Advantages:

1. Highly robust to distortion, accurate
2. Work completely within equirectangular images
3. Handle distortion in natural, geometric manner

Overview

1. Cover large displacements with Concept: 2t

sparse feature points, and estimate Equirectangular Stereo Rectification
Dense Optical Flow.

Spherical images can be
ular Image 2 rotated to any orientation
Ly =>Rotate arbitrary images

Only vertical displacement . |
to vertical alignment.

=> All pixels have vertical displacement
In the equirectangular projection [4]
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=>Can ignore distortion
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Equirectangular Rectification: Epipolar Geometry Dense Optical Flow
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(stereo rectification).
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3. Reproject to arbitrary pose.
Minimize dense reprojection error
with real image, over 6 DoF motion.
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Refine dense optical flow
over Epipolar Geometry
to a vertical orientation

Dense

Flow

Analogous to the conventional sparse
method’ but with dense info rmation with sparse feature points Bring images to . _ . Optical flow Magnitude => Disparity

(cover large displacements) similar orientation Rectified vertical optical flow

Estimate initial rotation




Motion Estimation via Dense Reprojection of Optical Flow

Concept: Dense Photometric Minimization
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Reproject
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3D Mpdel

Optical Flow Disparity

Instead of ray tracing,
=> reproject pixel-to-pixel

Pixelwise mapping:
(via interpolation)
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Reprojected Equirectangular Image

6 DoF Motion

For further images in the sequence,
reproject the disparity map from the closest two.

=> Can also be used for dense, photometric bundle adjustment.

Before photometric minimization

After photometric minimization

Experimental Evaluation: Robustness to Distortions

Image 1 was rotated with a pitch angle to induce distortions

Image 4: Image 1 under
pitch rotation, strong distortions

Three images captured

Experime'nAtaIEnvironment Equipment: Ricoh Theta S

Motion was estimated according to the sequence: Image 1 > Image 2 > Image 3> Image 4 Additional experiment:

Groundtruth: Image 4, same position as Image 1, known rotation angle

Pitch angle was varied from 0 to 180 degrees. Position and orientation errors were noted.
Compared to sparse feature points using a distortion resistant descriptor: A-KAZE [2]

In highly cluttered room
(Disparity estimation difficult)

Position Error Orientation Error

Results:
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Additional: 3D
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Reconstruction results (no mesh)
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Results in highly cluttered room:

Position Error Orientation Error
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Conclusion: Proposed method is highly accurate and robust to distortion
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