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2Medical Image Processing Applications

Cell detection Cell segmentation
Xing et al.
TMI 2016

CT segmentation 
Cherukuri et al.
TBME 2016
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3Cell Nucleus Detection and Challenges

I Morphological methods 1

I Challenges:
I Overlapping cells,
I Different nucleus shapes

I Deep learning based methods
are proposed 2

I Pros: Learned features can
boost the performance

I Cons: Fail in challenging
cases; naive learning of
features

I Solution: Learn better!
Guided by the expert domain
knowledge

1Y. Al-Kofahi et al., IEEE TBME 2010
2A. Cruz et al., MICCAI 2013
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4Introduction to Neural Networks

I Deep learning models inspired by the biological neural networks.
I They have been used for several applications: 3 4

I Classification: image segmentation, object detection, speech
recognition, ...

I Regression: Image super-resolution, denoising, ...

3J. Long et al., CVPR 2015
4Y. LeCun et al., Nature 2015
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5Introduction to Neural Networks

I One mostly used NN: Convolutional Neural Network (CNN)
I A mapping Y = f(X,Θ) is learned by minimizing the cost

function E(f(X,Θ),G) between the output Y and the ground
truth G

I Using a stochastic gradient descent method and an error
back-propagation algorithm 5 6

Input Conv. ReLU Pool Conv. ReLU Pool

. . .

Conv./FC

. . .

Input Layer Feature Extraction Layers Classification Layers

Output: Y

Y = f(X,Θ)

Input: X

5D.E. Rumelhart at al., Nature, 1986
6Y. Lacun at al., Neural Computation, 1989
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6Review: CNN/Deep Learning for Cell Nuclei Detection

I Recent works on cell detection based on CNN/Deep Learning
technique: SC-CNN 7, SR-CNN 8 SSAE 9, LIPSyM 10Beyond Classification: Structured Regression for Robust Cell Detection 359

34x34x32
17x17x32 14x14x3239x39x3

7x7x32

1024 1024
289

MC C M

17x17

F F F

Fig. 1. The CNN architecture used in the proposed structured regression model. C, M
and F represents the convolutional layer, max pooling layer, and fully connected layer,
respectively. The purple arrows from the last layer illustrate the mapping between the
final layer’s outputs to the final proximity patch.

adopt CNN for mitosis detection [4] in breast cancer histology images and mem-
brane neuronal segmentation [5] in microscopy images. Typically, CNN is used
as a pixel-wise classifier. In the training stage, local image patches are fed into
the CNN with their labels determined by the membership of the central pixel.
However, this type of widely used approach ignores the fact the labeled regions
are coherent and often exhibit certain topological structures. Failing to take this
topological information into consideration will lead to implausible class label
transition problem [7].

In this paper, we propose a novel CNN based structured regression model for
cell detection. Our contributions are summarized as two parts: 1) We modify
the conventional CNN by replacing the last layer (classifier) with a structured
regression layer to encode topological information. 2) Instead of working on the
label space, regression on the proposed structured proximity space for patches
is performed so that centers of image patches are explicitly forced to get higher
value than their neighbors. The proximity map produced with our novel fusion
scheme contains much more robust local maxima for cell centers. To the best
of our knowledge, this is the first study to report the application of structured
regression model using CNN for cell detection.

2 Methodology

We formulate the cell detection task as a structured learning problem. We re-
place the last (classifier) layer that is typically used in conventional CNN with a
structured regression layer. Our proposed model encodes the topological struc-
tured information in the training data. In the testing stage, instead of assigning
hard class labels to pixels, our model generates a proximity patch which pro-
vides much more precise cues to locate cell centers. To obtain the final proximity
map for an entire testing image, we propose to fuse all the generated proximity
patches together.

CNN-Based Structured Regression. Let X denote the patch space, which
consists of d × d × c local image patches extracted from c-channel color images.
An image patch x ∈ X centered at the location (u, v) of image I is represented

362 Y. Xie et al.

B

Original image     Proximity mask

Fig. 2. (A): The training data generation process. Each original image has a proxim-
ity mask of the same size and each local image patch has an proximity patch used
as the structured label. (B) The fusion process. Each pixel receives predictions from
it’s neighborhoods. For example, the red dot collects all the predictions from its 25
neighboring pixels and an average value will be assigned as final result. In this figure,
we only display 4 out of 25 proximity patches.

patches at a certain stride ss (1 ≤ ss ≤ d′) without significantly sacrificing the
accuracy. The second strategy, called fast scanning [6], is based on the fact that
there exists a lot of redundant convolution operations among adjacent patches
when computing the sliding-windows.

3 Experimental Results

Data Set and Implementation Details. Our model is implemented in C++
and CUDA based on the fast CNN kernels [8], and fast scanning [6] is imple-
mented in MATLAB. The proposed algorithm is trained and tested on a PC
with an Intel Xeon E5 CPU and a NVIDIA Tesla k40C GPU. The learning rate
is set as 0.0005 and a dropout rate of 0.2 is used for the fully connected layers.
The λ is set as 0.3 in (3).

Three data sets are used to evaluate the proposed method. First, The Can-
cer Genome Atlas (TCGA) dataset, from which we cropped and annotated 32
400×400 H&E-stained microscopy images of breast cancer cells, the magnifica-
tion is 40×. The detection task in this data set is challenging due to highly
inhomogeneous background noises, a large variability of the size of cells, and
background similarities. The second dataset is obtained from [2] that contains
22 phase contrast images of HeLa cervical cancer cell. These images exhibit
large variations in sizes and shapes. The third dataset contains 60 400×400
Ki67-stained neuroendocrine tumor (NET) images of size 400×400, the magni-
fication is 40×. Many touching cells, weak staining, and fuzzy cell boundaries
are presented in this dataset. All of the data are randomly split into halves for
training and testing.

Model Evaluation. Figure 3 shows the qualitative detection results on three
datasets. For quantitative analysis, we define the ground-truth areas as circular
regions within 5 pixels of every annotated cell center. A detected cell centroid

Detection 

7Sirinukunwattana et al., TMI 2016
8Xie et al., MICCAI 2015
9Xu et al., TMI 2016

10Kuse et al., JPI 2011
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7Challenges in Cell Nuclei Detection

I Overlapping cell: false positive and false negative detections
I Varying shapes of the nuclei: decrease detection and

segmentation accuracy

Cell detection Cell segmentation
Xing et al.
TMI 2016

Cell detection Cell segmentation
Xing et al.
TMI 2016

Cell detection Cell segmentation
Xing et al.
TMI 2016

Cell detection Cell segmentation
Xing et al.
TMI 2016

Cell detection Cell segmentation
Xing et al.
TMI 2016
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8Building Informative Priors

I Our Solution: Shape Prior Guided CNN



Mohammad Tofighi, Tiantong Guo, Jairam K.P. Vanamala, Vishal Monga | Deep Networks with Shape Priors for Nucleus Detection

9Proposed Method: SP-CNN Structure
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10Cost Function

I Suppose the shape set as S = {Si|i = 1, 2, . . . , n}
I CNN cost function

Θ = argmin
Θ
‖f(x;Θ)− y‖22 (1)

I Cost term of the shape priors

n∑
i=1

‖(gp(ŷ)� x̂) ∗ Si‖22 (2)

I Overall, the cost function of the SP-CNN is given as:

Θ = argmin
Θ
‖f(x;Θ)− y‖22 − λ

n∑
i=1

‖(gp(ŷ)� x̂) ∗ Si‖22 (3)
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11SP-CNN Visual Illustrations

Raw input (x) Raw edges (x̂) Window map gp(ŷ)
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12Shape Priors for Convolutional Neural Networks (SP-CNN)

I Train CNN using the input image and the ground truth label
I Using the CNN output, put masks on each detected local

maxima (done by maxpooling): gp(ŷ)
I Extract raw edge image from the raw input image using simple

Canny edge detection filter: x̂

I Element-wise multiplication: (gp(ŷ)� x̂) ⇒ masked edge map
I Masks out the edges from x̂ that are surrounding the detected

location in ŷ: delete non-cell edges
I Convolve masked edge map with each of the shapes in set S:

shape prior information
I Add them up and feed it back to CNN
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13Dateset & Assessment Methods

• UW Dataset 11: 100 H&E stained histology images of colorectal adenocarcinomas (∼30k cells)

• PSU Dataset – EE & Department of Food Science: 120 Colonic Mucosa images (∼26k cells)

• Test-Train split: UW (50 − 50, consistent with 11), PSU (20 − 80).
• For assessment Recall (R), Precision (P), and F1 Score are used:
P = TP

TP+FP , R = TP
TP+FN , and F1 = 2PR

P+R

11K. Sirinukunwattana et al. – TMI’16
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14Assessment Methods & Experimental Results

I All the results are obtained with same assessment procedure:
Table: Nucleus detection results for dataset of SC-CNN 12

UW Dataset Precision Recall F1 score
SP-CNN 0.803 0.843 0.823

SC-CNN 15 0.781 0.823 0.802
CP-CNN 15 0.697 0.687 0.692
SR-CNN13 0.783 0.804 0.793

SSAE14 0.617 0.644 0.630
LIPSyM15 0.725 0.517 0.604

CRImage16 0.657 0.461 0.542
PSU Dataset Precision Recall F1 score

SP-CNN 0.854 0.871 0.863
SC-CNN 15 0.821 0.830 0.825
SR-CNN 16 0.797 0.805 0.801

SSAE 17 0.665 0.634 0.649

12Sirinukunwattana et al., TMI 2016
13Xie et al., TMI 2016
14Xu et al., TMI 2016
15Kuse et al., JPI 2011
16Yuan et al., Sci. Trans. Med. 2012
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15Precision-Recall Curve for Choosing the Optimal Threshold - UW Dataset
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17Sirinukunwattana et al., TMI 2016
18Xie et al., MICCAI 2015
19Xu et al., TMI 2016
20Kuse et al., JPI 2011
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16Precision-Recall Curve for Choosing the Optimal Threshold - PSU Dataset
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17Example Results

(a) Example image (partial image) (b) Output of SP-CNN

(d) Detection by SP-CNN; F1-score = 0.843 (e) Detection by SC-CNN; F1-score = 0.801

(c) Groundtruth

(f) Detection by SR-CNN; F1-score = 0.784(a) Example image (partial image) (b) Output of SP-CNN
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18Example Results

Groundtruth Detection by SP-CNN; F1-score = 0.868

Detection by SC-CNN; F1-score = 0.815 Detection by SR-CNN; F1-score = 0.809
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19Conclusion

I Shape prior guided convolutional neural networks help improve
the performance of cell nuclei detection.

I Future research will be focused on designing data adaptive
learning shapes.



Thanks For Your Attention!
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1Back-propagation Analysis of SP-CNN

I Training a neural network with gradient descent requires the
calculation of the gradient of the cost function.

I The cost function of SP-CNN is as follows:

E(x;Θ) = ‖f(x;Θ)− y‖22 − λ
n∑

i=1

‖(gp(ŷ)� x̂) ∗ Si‖22 (4)

I It has two terms: fidelity cost term and the cost term
corresponding to the shape priors.

I Detection fidelity cost term is:

L = ‖f(x;Θ)− y‖22, (5)

I The cost term for shape priors is:

P = −λ
n∑

i=1

‖(gp(ŷ)� x̂) ∗ Si‖22. (6)



Mohammad Tofighi, Tiantong Guo, Jairam K.P. Vanamala, Vishal Monga | Deep Networks with Shape Priors for Nucleus Detection

2Back-propagation for Fidelity Cost Term

For detection fidelity cost term the back-propagation is performed by:
I At iteration step t, weights are updated by:

Θt+1 = Θt − η ∂L
∂Θt

(7)

where, η is learning rate for the stochastic gradient descent
method and Θt is the values of weights at previous iteration.

I Θ consists of weights from D convolutional layers, following
gradients are to be computed: ∂L

∂Wd , where d = 1, ..., D.
I For simplicity, we focus on filters and assume that output image

ŷ is of dimension N ×N .
I For computation of the gradients of the weights at last layer:

∂L

∂W d
= −(y − ŷ) · ∂ŷ

∂W d
(8)

I ∂ŷ
∂Wd is obtained according to 24.

24Y. LeCun et al., Proc. of the IEEE, 1998
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3Back-propagation for Shape Priors Cost Term
To carry the shape priors cost term into the Θ, we need to update Eq.
(7) accordingly. Examining closely of the Eq. (6), we can re-write it
as:

I Updated Eq. (7) will be:

Θt+1 = Θt − η ∂L
∂Θt

− η ∂P
∂Θt

. (9)

I Since, our network parameter Θ consists of weights from D
convolutional layers, following gradients are to be computed:

∂P
∂Wl

m,n
, where l = 1, ..., D and W is of dimension k1 × k2 has m

by n as the iterators.
I The equations for computing the gradients of weights at last layer

are given by:

∂P

∂Wl
m′,n′

=

N−k1∑
i=0

N−k2∑
j=0

∂P

∂xli,j

∂xl
i,j

∂Wl
m′,n′

=

N−k1∑
i=0

N−k2∑
j=0

δli,j
∂xl

i,j

∂Wl
m′,n′

,

(10)
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4Back-propagation for Shape Priors Cost Term

I where xli,j is the convolved input vector at layer l plus the bias
represented:

xl
i,j =

∑
m

∑
n

Wl
m,nol−1

i+m,j+n + bl, (11)

and the output vector at layer l given by ol
i,j = max(xl

i,j,, 0).
I For l = D and xD = ŷ:

δDi,j =
∂P

∂xD
i,j

= −
n∑

i=1

g−1
p (xD

i,j � x̂) ∗ rot180◦ {Sm,n} , (12)

where g−1
p (·) is assign the weights to where it comes from - the

“winning unit” because other units in the previous layer’s pooling
blocks did not contribute to it hence all the other assigned values
of zero. For the mathematical notations please refer to 25 and 26..

25V. Dumoulin et al., arXiv 2016
26Y. LeCun et al., Proc. of the IEEE, 1998
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5Preparation of Training Data
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