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Medical Image Processing Application
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Cell Nucleus Detection and Challenges

» Morphological methods '
» Challenges:
» Overlapping cells,
» Different nucleus shapes
» Deep learning based methods
are proposed 2
» Pros: Learned features can
boost the performance
» Cons: Fail in challenging
cases; naive learning of
features
» Solution: Learn better!
Guided by the expert domain
knowledge

Y. Al-Kofahi et al., IEEE TBME 2010
2A. Cruz et al., MICCAI 2013



Mohammad Tofighi, Tiantong Guo, Jairam K.P. Vanamala, Vishal Monga | Deep Networks with Shape Priors for Nucleus Detection

\
Introduction to Neural Networks )

» Deep learning models inspired by the biological neural networks.
» They have been used for several applications: 3 4
» Classification: image segmentation, object detection, speech
recognition, ...
» Regression: Image super-resolution, denoising, ...

Hidden
Layer1l

Simple Neural Network

3J. Long et al., CVPR 2015
4Y. LeCun et al., Nature 2015
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Introduction to Neural Networks

» One mostly used NN: Convolutional Neural Network (CNN)

» Amapping Y = f(X, ®) is learned by minimizing the cost
function E(f(X, ®), G) between the output Y and the ground
truth G

» Using a stochastic gradient descent method and an error
back-propagation algorithm 5 ©

Output: Y
Y = f(X,0)
Input: X

Input Layer Feature Extraction Layers Classification Layers

5D.E. Rumelhart at al., Nature, 1986
8Y. Lacun at al., Neural Computation, 1989
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Review: CNN/Deep Learning for Cell Nuclei Detection

» Recent works on cell detection based on CNN/Deep Learning
technique: SC-CNN 7, SR-CNN & SSAE °, LIPSyM 10
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7 Sirinukunwattana et al.,, TMI 2016
8Xie et al., MICCAI 2015

9Xu et al., TMI 2016

10Kuse et al., JPI 2011
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Challenges in Cell Nuclei Detection

» Overlapping cell: false positive and false negative detections

» Varying shapes of the nuclei: decrease detection and
segmentation accuracy
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Building Informative Priors

» Our Solution: Shape Prior Guided CNN
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Proposed Method: SP-CNN S
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Cost Function

» Suppose the shape setas S = {S;|i = 1,2,...,n}
» CNN cost function

© = argmin || f(x; ©) - y|3

» Cost term of the shape priors

ZH (9(3) © %) * Sill3

» Overall, the cost function of the SP-CNN is given as:

© = argmin [ /(x; ©) ~ yl[3 - Aanp ) © %) * il
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SP-CNN Visual lllustrations

()
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Shape Priors for Convolutional Neural Networks (SP-CNN) ‘ Va 1’

Train CNN using the input image and the ground truth label

Using the CNN output, put masks on each detected local
maxima (done by maxpooling): g,(¥)

Extract raw edge image from the raw input image using simple
Canny edge detection filter: x

» Element-wise multiplication: (g,(§) ©® %) = masked edge map

Masks out the edges from x that are surrounding the detected
location in y: delete non-cell edges

Convolve masked edge map with each of the shapes in set S:
shape prior information

Add them up and feed it back to CNN
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Dateset & Assessment Methods

e PSU Dataset — EE & Department of Food Science: 120 Colonic Mucosa images (~26k cells)

o Test-Train split: UW (50 — 50, consistent with '), PSU (20 — 80).
e For assessment Recall (R) Precision (P), and F1 Score are used:
TP

P= R = and F, = 225

TPYFDP>® IP+PN'

L K. Sirinukunwattana et al. — TMI'16
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Assessment Methods & Experimental Results

» All the results are obtained with same assessment procedure:

Table: Nucleus detection results for dataset of SC-CNN 12

UW Dataset Precision Recall F1 score
SP-CNN 0.803 0.843 0.823
SC-CNN 15 0.781 0.823 0.802
CP-CNN 15 0.697 0.687 0.692
SR-CNN™ 0.783 0.804 0.793
SSAE™ 0.617 0.644 0.630
LIPSymM'® 0.725 0.517 0.604
CRImage'® 0.657 0.461 0.542
PSU Dataset Precision Recall F1 score
SP-CNN 0.854 0.871 0.863
SC-CNN 15 0.821 0.830 0.825
SR-CNN 16 0.797 0.805 0.801
SSAE 7 0.665 0.634 0.649

12Sirinukunwattana et al.,, TMI 2016
3Xie et al., TMI 2016

14Xy et al,, TMI 2016

"SKuse et al., JPI 2011

1®vuan et al., Sci. Trans. Med. 2012
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Precision-Recall Curve for Choosing the Optimal Threshold - UW Dataset
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Figure: SC-CNN 7, SR-CNN '® SSAE °, LIPSyM 2°

7 Sirinukunwattana et al., TMI 2016

8xie et al., MICCAI 2015
19%u et al., TMI 2016
20Kuse et al., JPI 2011
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Precision-Recall Curve for Choosing the Optimal Threshold - PSU Dataset
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21Sjrinukunwattana et al.,, TMI 2016
22Xie et al., MICCAI 2015
23%u et al., TMI 2016
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Example Results
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(e) Detection by SC-CNN; Fl-score = 0.801 (f) Detection by SR-CNN; Fl-score = 0.784
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Example Results

Groundtruth Detection by SP-CNN; Fl-score = 0.868

Detection by SC-CNN; Fl-score = 0.815 Detection by SR-CNN; F1-score = 0.809
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Conclusion

» Shape prior guided convolutional neural networks help improve
the performance of cell nuclei detection.

» Future research will be focused on designing data adaptive
learning shapes.



Thanks For Your Attention!
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. ) ‘
Back-propagation Analysis of SP-CNN &) )

» Training a neural network with gradient descent requires the
calculation of the gradient of the cost function.

» The cost function of SP-CNN is as follows:

E(x;0) = [|f(x;©) —y|3 - AZng )OR)xSill3  (4)

» It has two terms: fidelity cost term and the cost term
corresponding to the shape priors.

» Detection fidelity cost term is:

= f(x;©) - yl3, (5)

» The cost term for shape priors is:

:—AZH 9(F) @ %) * S;[3. (6)
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Back-propagation for Fidelity Cost Term R

For detection fidelity cost term the back-propagation is performed by:
» At iteration step t, weights are updated by:

oL

t+1 _ ot _
O =0 — 5o (7)

where, 7 is learning rate for the stochastic gradient descent
method and ©! is the values of weights at previous iteration.

» O consists of weights from D convolutional layers, following
gradients are to be computed: 6Wd, where d=1,...,D.

» For simplicity, we focus on filters and assume that output image
y is of dimension N x N.

» For computation of the gradients of the weights at last layer:

oL .. 0y
W:—(y—}’)'awd (8)

> C,)Wd is obtained according to 2

24Y LeCun et al., Proc. of the IEEE, 1998
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Back-propagation for Shape Priors Cost Term

To carry the shape priors cost term into the ®, we need to update Eq.
(7) accordingly. Examining closely of the Eq. (6), we can re-write it
as:

» Updated Eq. (7) will be:

oL oP
Toer ~ Toer
» Since, our network parameter © consists of weights from D

convolutional layers, foIIowing gradients are to be computed:
aw' ,wherel =1,...,D and W is of dimension k; x ks has m

by n as the iterators.
» The equations for computing the gradients of weights at last layer

®t+1 @t

are given by:
8P N—ky N—ko ap aX N—ky N—ko

WL 2 1! awl , =2 2 5”an :
m’.n i=0 j=0 W] m/,n =0 j=0
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Back-propagation for Shape Priors Cost Term ‘ =) )

» where mé’j is the convolved input vector at layer [ plus the bias
represented:

1—
Xij =D Whnolir ipn + b, (11)
m n

and the output vector at layer [ given by o! ; = max(x! ; ,0).

i.j,
» Forl =D andx” =y:

n

oP _ 2
53 = 7(9XD = - ng 1(Xil?j © X) * rotygpe {Sm,n} ) (12)
,J i=1

where g, !(-) is assign the weights to where it comes from - the

“winning unit” because other units in the previous layer’s pooling
blocks did not contribute to it hence all the other assigned values
of zero. For the mathematical notations please refer to 2> and 26..

25\ Dumoulin et al., arXiv 2016
26Y. LeCun et al., Proc. of the IEEE, 1998
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Example Results

Groundtruth Detection by SP-CNN; Fl-score = 0.881

Detection by SC-CNN; Fl-score = 0.838 Detection by SR-CNN; Fl-score = 0.827
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Example Results

Groundtruth

SC-CNN5
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