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ABSTRACT
This paper presents an approach to jointly retrieve camera
pose, time-varying 3D shape, and automatic clustering based
on motion primitives, from incomplete 2D trajectories in a
monocular video. We introduce the concept of order-varying
temporal regularization in order to exploit video data, that can
be indistinctly applied to the 3D shape evolution as well as to
the similarities between images. This results in a union of reg-
ularized subspaces which effectively encodes the 3D shape
deformation. All parameters are learned via augmented La-
grange multipliers, in a unified and unsupervised manner that
does not assume any training data at all. Experimental valida-
tion is reported on human motion from sparse to dense shapes,
providing more robust and accurate solutions than state-of-
the-art approaches in terms of 3D reconstruction, while also
obtaining motion grouping results.

Index Terms— Non-Rigid Structure from Motion, Order-
Varying Regularization, Union of Regularized Subspaces

1. INTRODUCTION

In the last decade, many efforts have been done towards devel-
oping 3D perception algorithms. Initially, rigidity constraints
were exploited to acquire robust and accurate 3D geometries
from monocular video, posing a well-posed problem without
accounting for any extra sensor [1]. These formulations were
later extended to the non-rigid domain, where many different
3D shape configurations may yield very similar 2D observa-
tions. Addressing this ambiguous scenario requires incorpo-
rating more sophisticated priors than those utilized in the rigid
case, able to constraining the solution space. In the literature,
this problem is known as Non-Rigid Structure from Motion
(NRSfM), and consists in retrieving shape and motion from
2D point trajectories in a RGB video without the need for a
pre-trained model.

The most standard priors for NRSfM enforce a low-rank
constraint over the entire shape [2, 3], the 3D point trajecto-
ries [4, 5, 6] or the force patterns that induce the deforma-
tions [7]. These approaches, though, consider only one single
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low-rank modality, and are prone to fail in situations that
need a larger level of expressiveness. To solve this limitation,
recent approaches have been formulated in terms of a union
of subspaces, but without properly encoding the physical pri-
ors on an image sequence. In these cases, it is worth noting
that most frames are similar to their neighbors in video data.
In this paper, we propose to exploit this sequential nature,
by incorporating two neighbor-penalty terms into a union-
of-subspaces model: one to enforce consecutive temporal
similarities, and another to impose smooth deformations over
time.

2. RELATED WORK

Estimating time-varying 3D shape while retrieving camera
motion from solely the observation of 2D point tracks in
a RGB video is a severely under-constrained problem that
demands more sophisticated prior knowledge. The most
popular approach to address the inherent ambiguity of the
NRSfM problem consists in assuming the 3D shape to lie
in a low-rank subspace. In this context, factorization-based
approaches were presented by using shape [3, 8, 9], trajec-
tory [4, 5, 6], shape-trajectory [10, 11], and force [7] models,
where the dimensionality of the subspace was assumed to
be known. More recently, other formulations have imposed
a low-rank constraint by directly minimizing the rank of a
matrix representing the 3D shape. To do this, these formu-
lations rely on the data lie in a single [12, 13], in a union of
temporal [14] or spatio-temporal [15] subspaces, or by means
of multiple unions of them [16]. On top of these models,
additional spatial [2] or temporal [17, 18, 19, 20] smooth-
ness constraints have also been considered, even obtaining
real-time solutions [21, 22]. However, the sequential nature
in video data has not been properly exploited in previous
formulations, considering both deformations and similarities.
In this work, we account for temporal consistency using a
novel formulation based on a union of regularized subspaces.
This constraint allows establishing a double temporal regular-
ization, that can be imposed by using a unique order-varying
smoothness matrix. We first penalize deviations on consecu-
tive motion similarities by incorporating a temporal Laplacian
regularization term, and then, our model is complemented by
means of a temporal regularization over the 3D shape.



3. NON-RIGID STRUCTURE FROM MOTION

Let us consider a set of P 3D points viewed along F image
frames. We denote by xfp = [xfp , y

f
p , z

f
p ]> the 3D location

of the p-th point at frame f , and by w̃f
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f
p ]> its 2D

projection in the image plane. Under orthography, the camera
translation can be computed as the mean of the observations,
such that tf =

∑
i w̃

f
p/P , and subtracting it in each frame

we can obtain zero-mean measurements as wf
p = w̃f

p − tf .
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where W is a 2F × P matrix storing the 2D trajectories ar-
ranged in columns, G is a 2F × 3F block diagonal matrix,
made of the F truncated 2 × 3 camera rotations Rf , and X
is a 3F × P matrix with the 3D locations of the points along
the sequence, also arranged in columns. The NRSfM prob-
lem consists in retrieving the deformable shape X and camera
motion G matrices from 2D trajectories W in a RGB video.

For later computations, we also include another interpre-
tation of the shape matrix, the matrix Y, that re-arranges the
entries of X into a new 3P × F matrix. These two shape in-
terpretations can be mapped one onto the other by means of
X = (I3⊗Y>)A and Y = (X>⊗I3)B, where⊗ is the Kro-
necker product operator, I3 the identity matrix, and A and B
are binary matrices of size 9N ×N and 9F ×F , respectively.

4. ORDER-VARYING TEMPORAL
REGULARIZATION

In this paper, we propose several temporal regularization pri-
ors to encode the sequential relationships in video data. We
will use this type of priors to enforce a temporal smoothing of
some model parameters, such as the time-varying 3D location
of an observed object in the monocular video. To this end, we
draw inspiration in the theory of finite differences, writing a
smoothness constraint in terms of a finite number of values
along a temporal direction. For instance, we can impose a
first-order approximation of the type xfp ≈ xf+1

p to enforce
smooth deformations, i.e., the 3D location of the p-th point
in two neighboring frames does not change much. In a simi-
lar manner, we could impose higher-order approximations to
extend the influence of the neighborhood, obtaining different
levels of regularization.

To enforce a temporal smoothness constraint over all ob-
ject points along the sequence, we define a F × F matrix Lo,
where the subindex denotes the order of the approximation.
This is a highly sparse matrix, especially for low-order ap-
proximations. For instance, when considering the first terms

of approximation, L1 can be modeled by a lower bidiagonal
matrix, L2 by a tridiagonal one and so on. It is worth pointing
out that our matrix can degenerate also into L0 ≡ IF when no
relations appear in the data. To better illustrate the structure of
these matrices, we next explicitly write some examples of the
first-order forward, the second-order central, and the fourth-
order central –with boundary conditions– difference approxi-
mations:
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5. 3D RECONSTRUCTION AND MOTION
GROUPING FROM 2D TRAJECTORIES

After these preliminary concepts, we next formulate the gen-
eral problem and then propose an efficient and unified opti-
mization strategy to solve it, which does not need training
data.

5.1. Problem Formulation

For simultaneously solving the NRSfM problem (time-
varying shape X and motion G) and clustering the mo-
tion into action primitives, we propose encoding the shape
deformation by means of a union of regularized temporal
subspaces in combination with temporal smoothness priors.
To enforce the union of temporal subspaces, we consider an
F × F affinity matrix F, such that Y = YF + N, where N
represents a 3P × F residual noise. We assume the matrices
Y and F to be low-rank and, therefore, they can be com-
puted by minimizing their rank. Since this is a non-convex
NP-hard problem we used the nuclear norm instead, which
is its convex relaxation [23, 24]. Additionally, we consider
extra penalty terms to exploit the temporal closeness in time
video data, by means of the matrix Lo. To this end, we add
a temporal Laplacian regularization [25] function p(F) to
incorporate the temporal information in the affinity matrix.
Additionally, we include a temporal regularization over the
time-varying 3D shape matrix, by enforcing the constraint
YLo.

We denote by Ω ≡ {W,G,F,X,Y,N} the set of all
model parameters that needs to be estimated. Our input data
consist of partial 2D point tracks in a RGB video W̄, and
the corresponding visibility matrix V ∈ RF×P , with {1, 0}
entries indicating whether a point in a specific frame is visi-
ble or not. Considering orthonormality constraints on camera



rotations, our problem can be written as:

arg min
Ω

‖ (V ⊗ 12)�
(
W − W̄

)
‖2F + β‖W‖∗ + γ‖Y‖∗

+ γ‖F‖∗ + φ p(F) + λ‖N‖1 (3)

subject to W = GX∑F
f=1 RfRf> = F I2

Y = YF + N
(I3 ⊗Y>)A = X
YLo = 0

where � denotes a Hadamard product, 1 is a vector of ones,
‖ · ‖∗ and ‖ · ‖1 represent the nuclear norm and the l1-
norm, respectively, and ‖ · ‖F indicates the Frobenius norm.
{β, γ, φ, λ} are penalty weight coefficients. All these values
were determined empirically using a validation sequence, and
kept constant for the rest of all experiments.

The overall problem in Eq. (3) is non-convex, and it can be
approximated by a three-step strategy. First of all, we solve a
matrix-completion problem to compute full measurements W
from incomplete data W̄, enforcing the measurement matrix
to be low rank. After that, we retrieve the camera motion
matrix G. Both previous steps are performed as described
in [15]. Finally, we jointly estimate shape X (or its alternative
interpretation Y) along with the affinity matrix F, solving the
subproblem:

arg min
F,Y,X,N

γ(‖Y‖∗ + ‖F‖∗) + φ p(F) + λ‖N‖1 (4)

subject to W = GX
Y = YF + N
(I3 ⊗Y>)A = X
YLo = 0

5.2. Simultaneous 3D Shape and Grouping

To solve the objective function in Eq. (4), we devise an opti-
mization algorithm based on Augmented Lagrange Multipli-
ers (ALM), being the equivalent Lagrangian form of Eq. (4):

arg min
J,F,X,Y,N

γ(‖Y‖∗+‖J‖∗)+φ tr(FLoF
>)+λ‖N‖1 (5)
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2
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α

2
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+tr(M>
5 (F−J))+

α

2
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where the matrix J is a dual variable. In addition, we
also introduce the Lagrange multipliers: M1 ∈ R2F×N ,
{M2,M4} ∈ R3N×F , M3 ∈ R3F×N , and M5 ∈ RF×F ,
and α > 0 is a penalty weight to improve convergence. tr(·)
denotes the trace of a matrix.
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Fig. 1. Temporal-regularization evaluation on human
motion capture video sequences with noisy observations.
Left: 3D reconstruction error eS per video sequence. For ev-
ery case, we evaluate first-, second-, and fourth-order approx-
imations. Right: Some sample frames of the Yoga and Stretch
sequences. Red dots correspond to the shape estimated with
our approach, and purple circles are the ground truth. Best
viewed in color.

The problem in Eq. (5) can be efficiently resolved by esti-
mating every model parameter separately and in closed form,
while keeping fixed the rest of model parameters. Particu-
larly, to solve the nuclear-norm problems, we apply a sin-
gular value thresholding minimization [26] with a shrinkage
operator S γα (x) = max(0, x − γ

α ). For the l1-norm mini-
mization problem, we use the element-wise shrinkage opera-
tor S λα (x) = max(0, x− λ

α ) [27].

6. EXPERIMENTAL EVALUATION

We now present our experimental evaluation on several hu-
man motion videos, considering articulated and continuous
motion, face and full body configurations, and scenarios with
missing data. First of all, we evaluate our algorithm on the
articulated human motion dataset introduced in [4], which in-
cludes five motion activities. As it is common in the litera-
ture [6, 11, 12], we will report the normalized mean 3D error
eS , and the mean rotation error eR. For further details, we
refer the reader to these papers. Additionally, we also provide
the object grouping error eG as defined in [15], after applying
spectral clustering [28] over the estimated matrix F.

We first evaluate our approach by considering different
alternatives to enforce the temporal regularization by the
matrix Lo. Specifically, we test over first-, second- and
fourth-order approximations. As shown in Fig. 1-left, when
using higher-order approximation to enforce the temporal
regularization, the estimated 3D reconstructions are in gen-
eral more accurate. We also compare our URS (Union of
Regularized Subspaces) algorithm with L4 against seven
state-of-the-art methods: EM-PPCA [3], MP [8], PTA [4],
CSF [11], KSTA [10], BMM [12], and PPTA [6]. In con-
trast to the rest of approaches, our method does not require
tuning the subspace rank R, which had to be done for every
competing approach and experiment, considering the basis
rank that produced the lowest eS . We consider two situa-
tions: noise-free observations, and 2D trajectories artificially



PPPPPPPPData
Met.

EM-PPCA [3] MP [8] PTA [4] CSF [11] KSTA [10] BMM [12] PPTA [6] URS (Ours)

eR eS(R) eR eS(R) eR eS(R) eR eS(R) eR eS(R) eR eS(R) eR eS(R) eR eS eG[%]

Drink .186 .261(7) .330 .357(12) .006 .025(13) .006 .022(6) .006 .020(12) .007 .027(12) .006 .011(30) .006 .009 0.8(2)
Stretch .749 .458(7) .832 .900(8) .055 .109(12) .049 .071(8) .049 .064(11) .068 .103(11) .058 .084(11) .058 .061 4.1(3)
Yoga .688 .445(8) .854 .786(2) .106 .163(11) .102 .147(7) .102 .148(7) .088 .115(10) .106 .158(11) .106 .143 0.3(2)
Pick-up .417 .423(14) .249 .429(5) .155 .237(12) .155 .230(6) .155 .233(6) .121 .173(12) .154 .235(12) .154 .221 3.7(3)
Dance – .339(4) – .271(5) – .296(5) – .271(2) – .249(4) – .188(10) – .229(4) – .165 –
Average error: .385 .549 .166 .148 .143 .121 .143 .119
Relative error: 3.23 4.61 1.39 1.24 1.20 1.02 1.20 1.00
Drink .231 .250(7) .329 .517(12) .043 .045(13) .043 .044(6) .043 .042(12) .044 .056(12) .042 .038(30) .042 .044 3.6(2)
Stretch .819 .886(7) .872 .975(8) .091 .144(12) .091 .121(8) .091 .166(11) .098 .183(11) .091 .123(11) .091 .119 8.4(3)
Yoga .700 .507(8) .858 .791(2) .124 .174(11) .125 .168(7) .125 .172(7) .136 .195(10) .124 .174(11) .125 .167 0.0(2)
Pick-up .499 .807(14) .250 .407(5) .148 .228(12) .148 .224(6) .148 .222(6) .141 .212(12) .148 .228(12) .148 .207 3.1(3)
Dance – .336(4) – .282(5) – .299(5) – .266(2) – .248(4) – .236(10) – .222(4) – .164 –
Average error: .557 .594 .178 .165 .170 .176 .157 .140
Relative error: 3.97 4.24 1.27 1.18 1.21 1.26 1.12 1.00

Table 1. Quantitative comparison on human-motion sequences. We include rotation eR and reconstruction eS errors for
competing techniques: EM-PPCA [3], MP [8], PTA [4], CSF [11], KSTA [10] and BMM [12], and PPTA [6]; and for our URS
approach. For each solution, we also provide in parentheses the rank R of the linear subspace that produced the lowest eS error.
Relative error is always represented with respect to URS reconstruction. For ours, we also include grouping error eG[%], and
the number of motion groups in parentheses. The symbol “−" denotes that ground truth data is not available. Top: Noise-free
observations. Bottom: Noisy observations.
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Fig. 2. Affinity matrices. In both cases, we represent our
estimated matrix F over noisy observations, and the corre-
sponding ground truth. We also represent the group bar. Left:
Drink sequence. Right: Stretch sequence.

corrupted by zero-mean Gaussian noise with standard devi-
ation σnoise = 0.01ρ, with ρ being the maximum distance
of an image point to the centroid of all the points. Table 1
summarizes the 3D reconstruction errors for all methods,
datasets, and situations. Note that our approach consistently
outperforms state-of-the-art in terms of 3D reconstruction,
especially for noisy observations, reducing the 3D error of
other approaches by large margins between 12% and 424%.
Some examples of our 3D reconstructions for the Yoga and
Stretch datasets are shown in Fig. 1-right. In Fig. 2, we show
a qualitative comparison between our affinity estimation and
the ground truth, together with corresponding grouping bars.
We observe the clustering we obtain is very accurate.

We also validate the robustness of our algorithm to occlu-
sions, by processing an American-sign-language sequence,
where a man is moving the head while talking and hand ges-
turing [7]. Figure 3-top shows some frames and our 3D re-
construction, as well as the affinity and groups estimation.
Finally, we also test our method to dense data. To this end,
we process a back sequence with 20,561 2D trajectories taken
from [13]. In Fig. 3-bottom is displayed the 3D reconstruc-
tion for some images, along with the estimated similarities
and groups. Despite being only qualitative, the reconstruc-
tion results seem very accurate.
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Fig. 3. Face and Back sequences. In both cases, we repre-
sent the same information. Left: Motion affinity matrix we
recover, and the corresponding group bar. Right: Images and
a general view of the reconstructed shape. Every color corre-
sponds to a motion group. Blue crosses are missing points.

7. CONCLUSION

We have presented a novel formulation to solve the NRSfM
problem in a unified and unsupervised manner. For this pur-
pose, we have proposed a union of regularized subspaces
that enforces both temporally consistent 3D reconstructions
and grouping samples into motion primitives. An energy-
based formulation is designed to encode the problem, that
is solved using augmented Lagrange multipliers. We show
that besides providing correct motion grouping, our method
produces more accurate solutions than the rest of competing
approaches to recover human motion, can cope with missing
entries and handles dense data. In the future, we aim at using
this research to solve the problem in a sequential fashion,
retrieving the model parameters as the data arrives.
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