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Introduction
* High Resolution & Contrast imaging reqguirement
» Large FPA sensors are expensive
» Effect of noise & bad pixel

» Compressive Sensing = Compressive
Focal Plane Array Imaging

 Digital Micromirror Devices (DMD)

« Compressive Sensing reconstruction algorithms are
slow

» Real-time application
» Large matrix multiplication

Motivation

* Real-time applicable algorithms needed for
reconstruction.

 Alternating Direction Method of Multipliers
(ADMM) for fast convergence

* Requires large matrix inversion with
ADMM

* Robustness against bad pixels.

» Fast implementation

Observation Model

* Multiple snapshots, each modulated using a DMD
mask
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Figure 1: Observation model, modulation using DMD
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* Linear Forward Model:
y=Ax+n (1)
» A: Bernoulli type block-diagonal sensing matrix.
yi = Aix +n; (2)
* Full +1/0 sensing matrix

* Xx:Scene, n: noise

Previous Approaches

A
min TV (x) + > | Ax — y||5 (3)
X

* Optional positivity constraint, other sparsity
bases. TVAL3 [1]

* EXxploit block-sparse structure

Theory
* Approach:
* Break block-sparse structure (reorder)
=[(DAD" - (DA']T
* D: Downsampling operator, A;: Mask at
snapshot i.
mxin a, TV(x) + a, ||Fx||; (4)

subjectto |[|DA;x — y;|l, < €,
x|ljl=0,j€1,---,N

» €7:noise energy in snapshot |

TV(x) = X '\/(\71‘35[]']‘)2 + (VLlxlj1])=,

Ixll, = (z (Ix[j Dp)

* N:pixel

Proposed Method

* An Alternating Direction Method of Multipliers
(ADMM) was developed.

min f,(x) + f,(2) (5)

subject to x = zWM), ..., x = z(2+™)

+ Set fo(2) = ey TV (V) + ey |[Fz| +
Li (HDAiZ(ZH) —yill, < Ei')’fl(x) = 0.
* Solve 2 proximal mappings and m projections.
» Total Variation > Chambolle Projection [2]

* L1-norm > Soft Thresholding

 |ndicator Functions - Derived In the Paper
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Advantages
Main advantage:

* Lower computational complexity
(O(mN + Nlg(N) + kN))

* m 2slg(N)

Faster convergence, complexity of OMP

Results
Comparison to literature
« TVALS3
» Matrix-based ADMM
* Projection-based ADMM (Proposed)

Faster than state-of-the-art (TVALS3)

Better image quality using linear
combination of two sparsifying bases
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Figure 2: Convergence times vs compression ratio
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Figure 3: Reconstruction PSNRs vs computation time
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Figure 4. Reconstruction from simulated data: (a) Reference image, (b)
Low-resolution image obtained using the FPA sensor, (c) Reconstruction
using TVAL3, (d) Reconstruction using the proposed algorithm
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Figure 5. Reconstruction from experimental data: (a) Reference
Image, (b) Low-resolution image obtained using the FPA sensor, ()
Reconstruction using TVALS3, (d) Reconstruction using the proposed
algorithm



