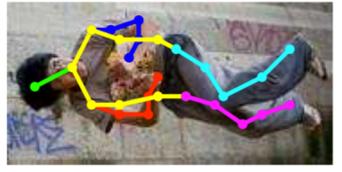


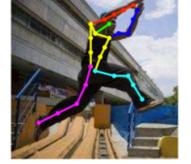
Multi-Scale Structure Learning for Human Pose Estimation

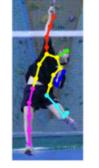
Lipeng Ke¹, Ming-Ching Chang¹, Honggang Qi² and Siwei Lyu¹

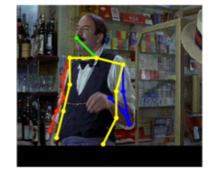
¹University at Albany, State University of New York, USA ²University of Chinese Academy of Sciences

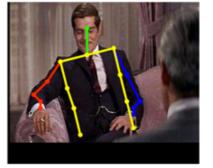
Pose Estimation

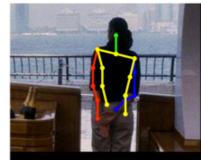


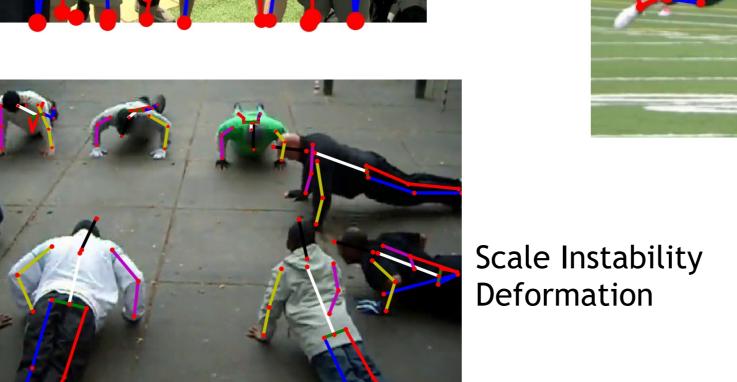










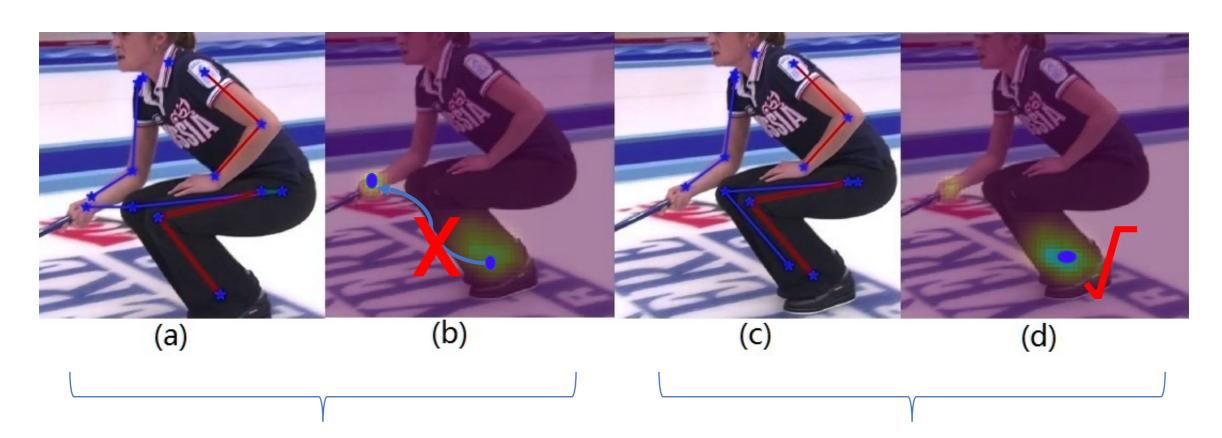


Challenges in Pose Estimation

Multi-Person

Occlusion

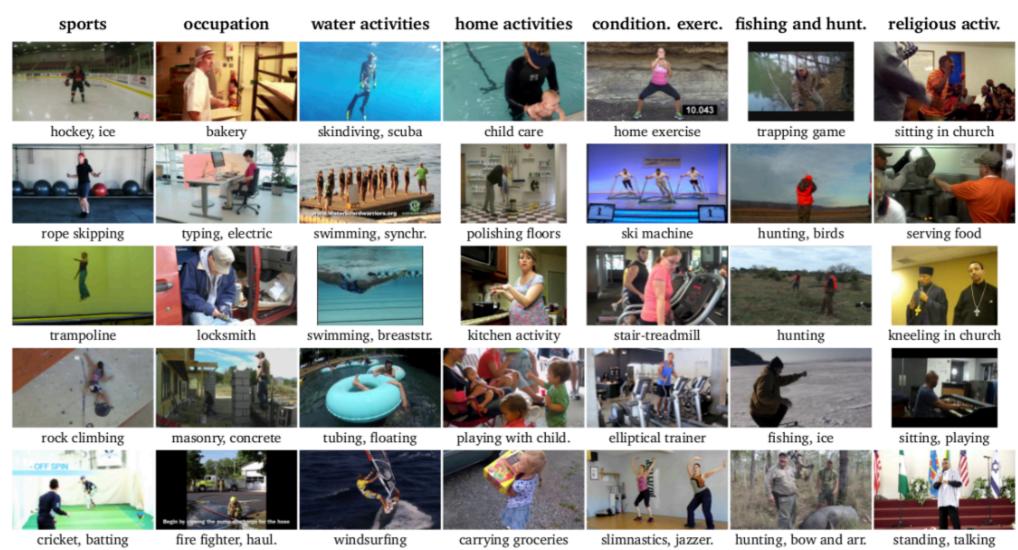
Method Overview



Multi-scale regression

Before Multi-Scale Regression
High Activation on both ankle &wrist
Left ankle —-> Right Wrist

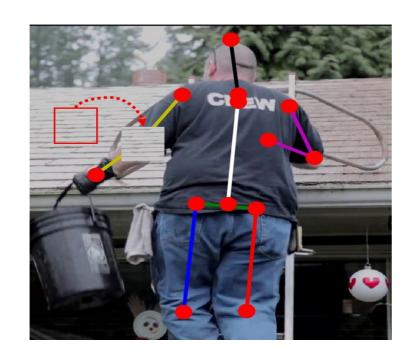
After Multi-Scale Regression Lower the activation on left wrist Correctly Predict left ankle Pose

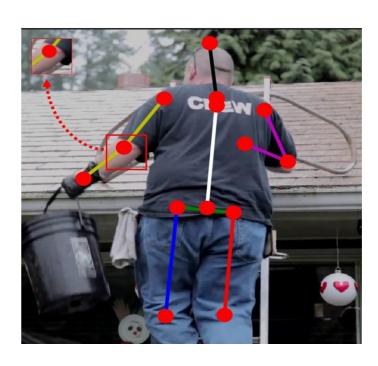


Dataset

MPII Human Pose dataset is a state of the art benchmark for evaluation of articulated human pose estimation

•~ 25K image, > 40K individuals, 410 different activity





- MPII Training data lack examples with occluded keypoints and multi-person scenario
 - We argument training data using key point masking by copy-move patches in the image

Model training

- Device: 4 GTX 1080 Ti
- Network: 8 x MSS-Net + MSR-Net layers
- Optimizer: SGD + ADAM
- Scheme: 150 epoch MSS-Net —> 75 epoch MSR-Net —> 75 epoch Jointly Training
- Data augmentation: key point masking in 75 epoch Jointly Training

On the FLIC dataset

	Elbow	Wrist
Tompson et al. CVPR'15 [23]	93.1	92.4
Wei et al. CVPR'16 [26]	97.8	
Newellet al. ECCV'16 [18]	99.0	97.0
Our model	99.2	97.3

On the MPII dataset

	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Total	AUC
Our method	98.5	96.8	92.7	88.4	90.6	89.3	86.3	92.1	63.8
Chen et al. ICCV'17 [7]	98.1	96.5	92.5	88.5	90.2	89.6	86.0	91.9	61.6
Chou et al. arXiv'17 [9]	98.2	96.8	92.2	88.0	91.3	89.1	84.9	91.8	63.9
Chu CVPR'17 [12]	98.5	96.3	91.9	88.1	90.6	88.0	85.0	91.5	63.8
Luvizon et al. arXiv'17 [17]	98.1	96.6	92.0	87.5	90.6	88.0	82.7	91.2	63.9
Ning <i>et al.</i> TMM'17 [19]	98.1	96.3	92.2	87.8	90.6	87.6	82.7	91.2	63.6
Newell ECCV'16 [18]	98.2	96.3	91.2	87.1	90.1	87.4	83.6	90.9	62.9
Bulat ECCV'16 [4]	97.9	95.1	89.9	85.3	89.4	85.7	81.7	89.7	59.6
Wei CVPR'16 [26]	97.8	95.0	88.7	84.0	88.4	82.8	79.4	88.5	61.4
Insafutdinov ECCV'16 [13]	96.8	95.2	89.3	84.4	88.4	83.4	78.0	88.5	60.8
Belagiannis FG'17 [2]	97.7	95.0	88.2	83.0	87.9	82.6	78.4	88.1	58.8

Examples

Summary

- A new method for DL based pose estimation
 - Multi-Scale Supervision helps multi-scale feature learning
 - Multi-Scale Regression optimize both scale and structure
 - Embedded structure loss learns human skeleton in DNNs
 - Hard sampling adds robustness in challenge case
- An improved model published in our ECCV 18 paper leads performance on the MPII human pose estimation challenge

Thank you

