IMPROVED PAIRWISE PIXEL-VALUE-ORDERING FOR HIGH-FIDELITY REVERSIBLE DATA HIDING

Introduction

A new approach which improves the reversible data hiding framework of Ou et al.*

Original features:

- improved difference equations;
- streamlined pair classification and embedding;
- embedding parameters determined by linear programming.

Proposed scheme

- divide the image into equally sized blocks;
- split the blocks into three groups based on the t_1, t_2 complexity thresholds;
- use pairwise IPVO on smooth blocks:
 - sort the pixel values, $x_{(1)} \leq x_{(2)} \leq ... \leq x_{(n)}$;
 - select $x_{(1)}$, $x_{(2)}$, $x_{(n-1)}$ and $x_{(n)}$ as host pixels;
 - select $x_{(3)}$ and $x_{(n-2)}$ as reference pixels;
 - compute the corresponding difference values;
 - pair the host pixels as (x_{u1}, x_{v1}) and (x_{u2}, x_{v2}) based on their original positions in the block;
 - embed the pairs using the streamlined embedding equations.
- use classic IPVO on slightly noisy blocks:
 - sort the pixel values, $x_{(1)} \leq x_{(2)} \leq ... \leq x_{(n)}$;
 - select $x_{(1)}$ and $x_{(n)}$ as host pixels;
 - select $x_{(2)}$ and $x_{(n-1)}$ as reference pixels;
 - embed the host pixels based on their corresponding difference values.

noisy blocks remain unchanged.

* B. Ou, X. Li and J. Wang, High-fidelity reversible data hiding based on pixel-value-ordering and pairwise prediction-error expansion. Journal of Visual Communication and Image Representation, 2016.

Ioan Catalin Dragoi, Ion Caciula and Dinu Coltuc Electrical Engineering Department, Valahia University of Targoviste, Romania

