IMPROVED PAIRWISE PIXEL-VALUE-ORDERING FOR HIGH FIDELITY REVERSIBLE DAIA HIDING

Ioan Catalin Dragoi, Ion Caciula and Dinu Coltuc

Electrical Engineering Department, Valahia University of Targoviste, Romania

Introduction

A new approach which improves the reversible data hiding framework of Ou et al.*

Original features:

- improved difference equations;
- streamlined pair classification and embedding;
- embedding parameters determined by linear programming.

Proposed scheme

divide the image into equally sized blocks;
split the blocks into three groups based on the t_{1}, t_{2} complexity thresholds;

use pairwise IPVO on smooth blocks:

sort the pixel values, $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$;
select $x_{(1)}, x_{(2)}, x_{(n-1)}$ and $x_{(n)}$ as host pixels; select $x_{(3)}$ and $x_{(n-2)}$ as reference pixels; compute the corresponding difference values; pair the host pixels as $\left(x_{u 1}, x_{v 1}\right)$ and $\left(x_{u 2}, x_{v 2}\right)$ based on their original positions in the block;
embed the pairs using the streamlined embedding equations.
use classic IPVO on slightly noisy blocks:
sort the pixel values, $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)} ;$
select $x_{(1)}$ and $x_{(n)}$ as host pixels;
select $x_{(2)}$ and $x_{(n-1)}$ as reference pixels;
embed the host pixels based on their corresponding difference values.
noisy blocks remain unchanged.

Linear programming model

determine t_{1}, t_{2} and the block size b_{1} for the desired capacity C; pairwise IPVO offers a capacity of $C_{p 1}\left(t_{1}, b_{1}\right)$ and a distortion of $D_{p 1}\left(t_{1}, b_{1}\right)$;

- classic PVO offers $C_{p 2}\left(t_{2}, b_{2}\right)$ and $D_{p 2}\left(t_{2}, b_{2}\right)$;
the total capacity/distortion is:

$$
\begin{aligned}
& C_{p t_{1}, t_{2}, b_{1}, b_{2}}=C_{p 1}\left(t_{1}, b_{1}\right)+C_{p 2}\left(t_{2}, b_{2}\right)-C_{p 2}\left(t_{1}, b_{2}\right) \\
& D_{p} t_{1}, t_{2}, b_{1}, b_{2}=D_{p 1}\left(t_{1}, b_{1}\right)+D_{p 2}\left(t_{2}, b_{2}\right)-D_{p 2}\left(t_{1}, b_{2}\right)
\end{aligned}
$$

Objective function:

$$
F=\arg \min _{t_{1}, t_{2}, b_{1}, b_{2}} D_{p} t_{t_{1}, t_{2}, b_{1}, b_{2}}
$$

subject to $C_{p} t_{1}, t_{2}, b_{1}, b_{2} \geq C, t_{1}<t_{2}, b_{1}=b_{2}$.

Experimental Results

Conclusions

\checkmark a more efficient data hiding scheme that better exploits the 2D prediction error histogram;
\checkmark linear programming \rightarrow optimal embedding;
\checkmark outperform other recent PVO schemes.

