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Given the major paradigm shift implemented in CNN mod-
els evaluating the impact of preprocessing techniques
becomes appealing. In [3, 4], the impact of noise and denoising
techniques is analyzed using a CNN based approach where [4]
shows that popular CNN models like VGG-16 and GoogleNet,

are all negatively susceptible to noise and blur artificial degrada-
tions of training samples. In [3] the authors evaluate the impact of
implementing NLM denoising for a CNN using the MNIST dataset
with gaussian noise. No parameter assessment s shown in such work.
Assessing the impact of edge and contrast enhancement and denois-
ing of training samples using for instance the Deceived Non Lo-

cal Means (DNLM-IFFT) filter [5] which performs both tasks,
in a real world application application: the estimation of
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In pediatrics and endocrinology, estimation of skeletal matu-

rity using X-ray images is often performed by physicians in-
terested In comparing patient bone age with their chronological

age. The radiological examination analyzes the left hand X-ray im-
age using either the Greulich and Pyle or the Tanner-Whitehouse
methods. Such comparisons help to diagnose and observe the ef-
fects of endocrine and metabolic disorders. The usage of machine
learning to estimate bone age using digital X-ray images has been
explored in [1, 2], with recent deep learning based techniques being
the most successful approaches.
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DATA AND
EXPERIMENTS

he dataset consists in a publicly avail-
able RSNA digital images repository from
left hands of both male and female subjects, with
ages ranging from 1 month to 19 years. Data was
acquired from Stanford Children’s Hospital and Colora-
do Children’s Hospital. Since A and A are the most import-
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Our experiment results suggested that
image preprocessing for a CNN based
approach brings an Impressive accuracy boost
vielding very similar results to recent previous work,
with the lowest MAE of 0.79 [1] and our model achiev-
ing a similar MAE of O./9 years, with a larger dataset. The

ant parameters to be tuned for the DNLM filter, ANOVA was ANOVA showed that incrementing both parameters A and h
performed to compare performance with statistical significance of postively impact the CNN performance with statistical signifi-
tuning them. For both parameters we defined three and four levels cance, yielding a 42% accuracy boost over the base line model. As
respectively, with 12 combinations or treatments. We executed future work, given the concluded importance of preprocessing for
10 rep”cag per treatment for a total of 120 runs. CNN models, we aim to work in CNN architectures which imple—

ment preprocessing approaches, calibrating its parameters along

the model [6]. Table 1 shows a descriptive analysis of the results.

A h Avg. Std. Min.

0 0 22203 1.033 20.989
0 8 20457 139 18.168
0 1
0 1

2 19371 1.399 17.801

4 18.777 0.519 18.137
25 0 22367 0961 20.699
25 8 16.166 1.343 14.058
2.5 12 14.343 1.404 12.866
25 14 14998 0.837 13.42
5 0 21.079 0.853 20.11
5 8 12956 1.201 11.852

5 12 12.803 0.993 11.864
DNLM output with A = 5, /1 = 5, window size of 15 x 15 and a neighbor- 5 14 12.889 0.713 11.56

hood size of 3 x 3.

Table 1: RMSE Descriptive analysis with different parameter values for the DN-
LM-IFFT.
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