HIERARCHY OF GANS FOR LEARNING EMBODIED SELF-AWARENESS MODEL

Mahdyar Ravanbakhsh

DITEN, University of Genova, Italy

Introduction

Recently, several architectures have been proposed for learning embodied agents complex self-awareness (SA) models [1,2,3].

The main goal is that the autonomous system **learn a model** of itself while doing a certain task when driven by a human by looking at.

Accordingly, by transferring the learned model from human driver to the autonomous system develop a self-awareness model.

- We propose the **dynamic incremental SA models**.
- Experiences done by an agent modeled in a hierarchical fashion, starting from more simple situations to more structured ones.
- A cross-modal Generative Adversarial Networks (GANs) used to process high dimensional visual data.
- Different levels of the GANs are detected in a weaklysupervised manner using GANs discriminators decision boundaries.

Mohamad Baydoun **Damian Campo**

Training hierarchy of GANs

- **Goal**: learning a complex distribution.
- Idea: Split the distribution into smaller multiple small distributions.
- scenarios and from a simple situation,
- train new models **incrementally**.

- The incremental adaptive process to learn GANs hierarchy with normal training data
- The discriminator scores correspond to the error/innovations with respect to the other models that already learned.

Training output

- a) The reference GANs: detects straight movements, fails on curves
- b) Detected new situation: training the next level of GANs.

David Martin Carlo S. Regazzoni Pablo Marin Lucio Marcenaro

Carlos III University of Madrid, Spain

Online testing

Test scenario is an **abnormal** situation (presence of a pedestrian), where it **never observed** by the autonomous agent before.

Abnormality visualization

a) moving straight with normal situation

b) curving with normal situation

c) first observation of the pedestrian

d) starting to perform the avoiding action

e) the avoiding action

Results analysis

References

[1] M. Baydoun, D. Campo, V. Sanguineti, L. Marcenaro, A. Cavallaro, and C. Regazzoni, "Learning switching models for abnormality detection for autonomous driving", FUSION, 2018. [2] M. Ravanbakhsh, M. Baydoun, D. Campo, L. Marcenaro, and C. Regazzoni, "Learning multi-modal self-awareness models for autonomous vehicles from human driving", FUSION, 2018. [3] P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, andX. Yao, "Self-aware Computing Systems", 2016.

Red blobs are the possible abnormal areas

- Abnormality heatmap shows the possible abnormal areas