

Towards Camera Identification From Cropped Query Images

Waheeb Yaqub Manoranjan Mohanty Nasir Memon

Source Camera Attribution

Anonymous Image

- Verification: Was this picture taken with this camera?
- Identification: Was this picture taken from one a large collection of cameras?
- PRNU helps answer these questions.

PRNU¹

- Uniform light \rightarrow Different pixel values
- Physical property of sensor \rightarrow resilient
- Similar noise pattern is in all images of a camera

Signal = $I_0 + I_0 * PRNU + Other noise$

[1]:Jan Lukas, Jessica Fridrich, and Miroslav Goljan, "Digital camera identification from sensor pattern noise, "IEEE Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 205–214, 2006.

Source Camera Verification

Images from Alice's Camera

Source Camera Identification

PRNU Based Source Camera Identification has Computational Overheads

Correlation with billions of FP

Existing speedups don't work with crop

Existing Methods of Speedup

- Binarization: each fingerprint pixel by a single bit instead of 32bits
- ShortDigest: Only hottest & coldest pixel values
- Composite: fingerprint which is a mixture of many fingerprints

Existing Methods of Speedup (Binarization)

O1010010111101010111101000101010 → 1
10000001010101010010111010001111 → 0
Hamming distance instead of correlation
Computation & Storage (32 times better)
Performance (3-5% drop)

Existing Methods of Speedup (ShortDigest)

Only hottest & coldest pixel values
 Storage, Speed (70-80 times)
 Performance (1-2% drop)

Existing Methods of Speedup (Composite)

- Speed (up to 90-100 times)
- Performance (1-2% drop)
- Storage (double storage)
- IO load(60-80 time improvement)

Our Contribution

- Speedup attribution can still be done when cropped images (speedup factor 13)
- Non-cropped images speeds up by factor of 55.
- Test with variety of scaling techniques
- Storage requirements increased by 33%

Our Proposed Scheme

Proposed Scheme (cropped)

جامعـة نيويورك أبوظـي NYU ABU DHABI

Our Proposed Scheme (flowchart)

جامعـة نيويورك أبوظـي NYU ABU DHABI

Simple Example of Scaling PRNU

- F1 ≈ mean(f1+f2+f5+f6) ; Each pixel contribution is considered when scaling
- Bilinear interpolation Instance for one level

t	f ₁	f ₂	f ₃	f ₄	caling
rprint	f_5	f_6	f ₇	f_8	r Sra
ingei	f ₉	f ₁₀	f ₁₁	f ₁₂	round for S
ш	f ₁₃	f ₁₄	f ₁₅	f ₁₆	

ling	f_1	f ₂	f ₃	f ₄
r Scal	f_5	f ₆	f ₇	f ₈
up for	f ₉	f ₁₀	f ₁₁	f ₁₂
Group	f ₁₃	f ₁₄	f ₁₅	f ₁₆

Scaled	F_1	F_2	
	F_3	F_4	

Various Scaling Methods 100 Nearest-neighbour 90 Bilinear Bicubic 80 Box Lanczos-2 Percentage of images matched -Lanczos-3 70 60 50 40 30 20 10 0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1 Scale down factor

Lanczos scaling methods has the highest true positive rate compared to other scaling methods

ROC for Different Scaling Levels

جامعـة نيويورك أبوظـي NYU ABU DHABI

ROC for Different Scaling Levels-Cropped

18

Overhead Cost for Scaling

Conclusion

- In practice, images in social media are cropped and scaled and camera identification is difficult; conventional speed optimization techniques are either ineffective or do not apply
- Iteratively scaling the FP noise can be used to correlate cropped images

Questions email : memon@nyu.edu

W. Yaqub, M. Mohanty and N. Memon, "Towards Camera Identification from Cropped Query Images," 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 3798-3802.