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Source Camera Attribution

Anonymous Image

Social Media

» Verification: Was this picture taken with this
camerae

®» |denfification: Was this picture taken from one a
large collection of cameras?

= PRNU helps answer these questions.
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PRNU'

= Uniform light - Ditferent pixel values
®Physical property of sensor = resilient

= Similar noise pattern is in all images of a
camera

»Signal =lo + lo* PRNU + Other noise

[1]:Jan Lukas, Jessica Fridrich, and Miroslav Goljan, “Digital camera identification from sensor pattern noise,

"IEEE Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 205-214, 2006. .
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Source Camera Verification

Images from Alice’s Camera

& |

Anonymous Image

> Correlation«

|

Fingerprint (FP) Decision? PRNU noise
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Source Camera ldentification

facebook FP; Anonymous Image

“‘-_‘-_\“\_:_

flickr B P
photobucket |
~Correlation
Decision? PRNU noise

FP = Fingerprint 5
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» Correlation with billions of FP

®» Existing speedups don’t work with crop

FP = Fingerprint 6
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Existing Methods of Speedup

® Binarization: each fingerprint pixel by a

SI
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g
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e bit instead of 32bi

tDigest: Only hottest

ixel values

'S

& coldest

» Composite: fingerprint which is @
mixture of many fingerprints
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Existing Methods of Speedup
(Binarization)

=01010010111101010111101000101010 > 1
= 10000001010101010010111010100111 = O
®»Hamming distance instead of correlation
» Computation & Storage (32 times better)

»Performance (3-5% drop)
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Existing Methods of Speedup
(ShortDigest)

= Only hottest & coldest pixel values
»Storage, Speed (70-80 times)

»Performance (1-2% drop)
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Existing Methods of Speedup
(Composite)

»Speed (up to 20-100 times)
»Performance (1-2% drop)
»Storage (double storage)

®|0O load(60-80 time improvement)

HHEOOOBEaE .«
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Our Contribution

»Speedup attribution can still be done
when cropped images (speedup factor
13)

= Non-cropped Images speeds up by
factor of 55.

»Test with variety of scaling fechnigues

»Storage requirements increased by 33%

11
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Our Proposed Scheme

PRNU of query image |
downscaled to L2 PRNU of query image
downscaledto L1
Roundl: Correlate Round2: Correlate
PRNU at Ijevel 2 noise at Level 1 | : SRNU of _
(c.orrelatl.ng all (correlating only i f::l .quler'.y wgage
fingerprints). matched fingerprints, | original-size
T - | denoted by green _, '
. boarder). Round3: Correlate ’
T . noise on original size (Level 0). ./

12
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Proposed Scheme (cropped

Original Fingerprint

Fingerprint
downscaled to L1

Fingerprint
downscaled to L2

PRNU of query image
downscaledtol2

PRNU of query image
downscaledto L1

Roundl: Correlation ; | | | _
with NCC i | PRNU of originally-
‘ Round2: PCE correlation | ; sized query image

i, for potential cropped
\ locations Round3:. PCE correlation

S 5_ for potential cropped
‘ locations

13
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Our Proposed Scheme (flowchart)

Extract Header for cropping
information

Header Available R [ Use Scheme (cropped) ]
No

Yes

Cropped ? =
Use Scheme (Non-cropped)
No

Yes

Use Scheme (cropped)

14
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Simple Example of Scaling PRNU

»F] = mean(f1+f2+f5+f6) ; Each pixel
contribution is considered when scaling

® Bilinear interpolation Instance for one

level
i f f fy Bf ff
St fo £ i & f fo f, f B FF
2 <] R D 3
Eﬂ f9 flO f11 f12 % f9 f1o§f11 flz ik Fy
f13 f14 1:15 f16 g f13 f14§f15 f16

15
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Various Scaling Methods

Percentage of images matched

G\Y_ —— —+— Nearest-neighbour
90 [ ~— —&—Bilinear 7
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—— Lanczos-2
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Scale down factor

Lanczos scaling methods has the highest true positive rate compared to other
scaling methods

16
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ROC tor Different Scaling Levels
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ROC for Different Scaling Levels-
Cropped
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Overhead Cost for Scaling
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Conclusion

®|n practice, iImages in social media are
cropped and scaled and camera
identification is difficult; conventional
speed optimization fechnigues are
either ineffective or do not apply

®»|feratively scaling the FP noise can be
used to correlate cropped images

20
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Questions
emall :
memon@nyu.edu

W. Yaqub, M. Mohanty and N. Memon, "Towards Camera Identification from Cropped Query Images," 2018 25th
IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 3798-3802.
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