TAMPEREEN TEKNILLINEN YLIOPISTO TAMPERE UNIVERSITY OF TECHNOLOGY

Introduction

• Feature dimensionality reduction using graph embedding paradigm

- Intrinsic and penalty graph [2]
- Graph embedding unifies PCA, LDA, Isomap and many other methods
- For multilabel problems, how about correlation between the labels?

2 Previous Work

- Let $L = \{L_1, L_2, \cdots, L_q\}$ be the set of labels. Let $X = \{x_1, x_2, \cdots, x_N\}$ be the set of the samples where $x_i \in \mathbb{R}^M$. Let $Y = \{y_1, y_2, \cdots, y_N\}$ be the labels, where $y_i \in \{0, 1\}^q$.
- Our target is to learn a linear projection z = Wx where $W \in \mathbb{R}^{P \times M}$, P < M.
- Objective function

$$J = \sum_{i,j,i\neq j} \|Wx_i - Wx_j\|^2 A_{ij}.$$

• The regularization term

$$x^T W^T B W x = I.$$

- For PCA, $A_{ij} = \frac{1}{N}$ and B = I; For LDA, $A_{ij} = \delta(y_i, y_j)$ and $B = 1 \frac{1}{N}ee^T$.
- When B = I, the solution of this optimization problem can be obtained by solving the following eigenvalue problem

$$\tilde{L}w = \lambda w,$$

where $\tilde{L} = X^T L X$ and L is the Laplacian matrix of the intrinsic graph [1]. By keeping the first P eigenvectors of matrix L with the largest eigenvalues, we get the matrix W^* .

- For the multilabel problems, data points sharing many common labels should be close to each and data points that do not share common labels should be separated far away
- Euclidean distance: $A_{ij} = ||y_i y_j||^2$
- Hamming distance:

(3) $A_{ij} = count(y_i \oplus y_j),$ where \oplus is the XOR operator and $count(\cdot)$ calculates the number of 1s. Note, hamming distance calculate number of labels that differs in y_i and y_j

References

[1] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997. [2] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and S. Lin. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1):40-51, 2007.

Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance

Honglei Zhang, Moncef Gabbouj Signal Processing Tampere University of Technology, Finland

(1)

(2)

3 Methodology

Normalized mutual information of label 3.1

For two random variables X and Y, mutual inform

$$I(X;Y) = \sum_{y} \sum_{x} p(x,y) \log x$$

Normalized mutual information is defined as

$$NI(X,Y) = \frac{I(X;Y)}{\min(H(X),I)}$$

where H(X) and H(Y) are the marginal entropies the multilabel data and take each label L_i as a rand

$$p\left(L_{i}
ight) = rac{1}{N}\sum_{k=1}^{N}y_{k}(i),$$
 $p\left(L_{i},L_{j}
ight) = rac{1}{N}\sum_{k=1}^{N}y_{k}(i)y_{k}(i),$

3.2 Generalized hamming distance

Hamming distance defined in 3 can be written as

$$A_{ij} = count \left(y_i \lor y_j \right) - \langle y$$

where " \vee " is the "or" operator of two binary vector vectors y_i and y_j with nonorthogonal basis is define

$$\langle y_i, y_j \rangle = \sum_l \sum_m y_i(l) y_j(m)$$

where \mathbf{e}_l and \mathbf{e}_m are the basis vectors. From Eqs. 8 ized Hamming distance of the sample x_i and x_j with

$$A_{ij} = count(y_i \lor y_j) - y_i^2$$

where F is the normalized mutual information matrix

Theorem 1 Generalized Hamming distance becomes Hamming distance if labels are mutually independent.

		4 Multilabel Example
ls		flo
nation is defined as		Ca
$\frac{p(x,y)}{p(x)p(y)}.$	(4)	ch
	(5)	
$A(Y))^{\gamma}$		
s of variable X and Y . (dom variable, we have	Given	5 Experiments
	(6)	Raking loss values of dimensionality data
u(j).	(7)	Dimension 1 PCA 0.209 Hamming 0.212 Euclid. Y 0.21 Euclid. X 0.209 GH 0.209
		Ranking loss on NUS-WIDE 128 da
$_{i},y_{j} angle \ ,$	(8)	Dimension MLkNN IBLE
ers. The inner product o	of two	PCA 0.098 0. Hamming 0.096 0. Euclid. Y 0.097 0.
$\left< {{{f e}_l},{{f e}_m}} \right>,$	(9)	Euclid. X 0.098 0. GH 0.096 0.
8 and 9, we define the gen Th label y_i and y_j as follo	neral- wing:	
$Fy_j,$	(10)	6 Conclusion
Jrix.		\bullet For multilabel problems, labels and

• Generalized hamming distance captures the correlation between the labels • The results show that the proposed method consistently outperforms other dimensionality reduction methods.

ower, garden, sky, cloud, alm

nild, dog, labrador, lovely

hale, ocean, fish

y deduction methods and ML-kNN on Yeast 16 8 $0.202 \ 0.196 \ 0.18 \ 0.172$ $0.205 \quad 0.198 \quad 0.177 \quad 0.174$ $0.208 \quad 0.198 \quad 0.177 \quad 0.173$ $0.204 \quad 0.197 \quad 0.179 \quad 0.173$ $0.202 \ 0.195 \ 0.177 \ 0.172$ ataset - feature dimension is 4 ML BRKNN DMLKNN RLKNN 0.097 0.128 0.1422106 0.0950.1396.103 0.1260.0950.126 0.1403 104 0.097 0.1420.128 106 0.0950.1394103 0.126

re correlated