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1 Introduction

•Feature dimensionality reduction using graph embedding paradigm

• Intrinsic and penalty graph [2]

•Graph embedding uni�es PCA, LDA, Isomap and many other methods

•For multilabel problems, how about correlation between the labels?
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2 Previous Work

•Let L = {L1, L2, · · · , Lq} be the set of labels. Let X = {x1, x2, · · · , xN} be
the set of the samples where xi ∈ RM . Let Y = {y1, y2, · · · , yN} be the labels,
where yi ∈ {0, 1}q.
•Our target is to learn a linear projection z = Wx whereW ∈ RP×M , P < M .

•Objective function
J =

∑
i,j,i6=j

‖Wxi −Wxj‖2Aij. (1)

•The regularization term
xTW TBWx = I. (2)

•For PCA, Aij =
1
N and B = I ; For LDA, Aij = δ(yi, yj) and B = 1− 1

Nee
T .

•When B = I , the solution of this optimization problem can be obtained by
solving the following eigenvalue problem

L̃w = λw,

where L̃ = XTLX and L is the Laplacian matrix of the intrinsic graph [1]. By
keeping the �rst P eigenvectors of matrix L̃ with the largest eigenvalues, we
get the matrix W ∗.

•For the multilabel problems, data points sharing many common labels should
be close to each and data points that do not share common labels should be
separated far away

•Euclidean distance: Aij = ‖yi − yj‖2

•Hamming distance:
Aij = count(yi ⊕ yj), (3)

where ⊕ is the XOR operator and count(·) calculates the number of 1s. Note,
hamming distance calculate number of labels that di�ers in yi and yj
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3 Methodology

3.1 Normalized mutual information of labels

For two random variables X and Y , mutual information is de�ned as

I(X ;Y ) =
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
. (4)

Normalized mutual information is de�ned as

NI(X, Y ) =
I(X ;Y )

min (H(X), H(Y ))
, (5)

where H(X) and H(Y ) are the marginal entropies of variable X and Y . Given
the multilabel data and take each label Li as a random variable, we have

p (Li) =
1

N

N∑
k=1

yk(i), (6)

p (Li, Lj) =
1

N

N∑
k=1

yk(i)y(j). (7)

3.2 Generalized hamming distance

Hamming distance de�ned in 3 can be written as

Aij = count (yi ∨ yj)− 〈yi, yj〉 , (8)

where �∨� is the �or� operator of two binary vectors. The inner product of two
vectors yi and yj with nonorthogonal basis is de�ned as

〈yi, yj〉 =
∑
l

∑
m

yi(l)yj(m) 〈el, em〉 , (9)

where el and em are the basis vectors. From Eqs. 8 and 9, we de�ne the general-
ized Hamming distance of the sample xi and xj with label yi and yj as following:

Aij = count(yi ∨ yj)− yTi Fyj, (10)

where F is the normalized mutual information matrix.

Theorem 1Generalized Hamming distance becomes Hamming distance if labels

are mutually independent.
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4 Multilabel Example

�ower, garden, sky, cloud,
calm

child, dog, labrador, lovely

whale, ocean, �sh
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5 Experiments

Raking loss values of dimensionality deduction methods and ML-kNN on Yeast
data

Dimension 1 2 4 8 16

PCA 0.209 0.202 0.196 0.18 0.172

Hamming 0.212 0.205 0.198 0.177 0.174
Euclid. Y 0.21 0.208 0.198 0.177 0.173
Euclid. X 0.209 0.204 0.197 0.179 0.173

GH 0.209 0.202 0.195 0.177 0.172

Ranking loss on NUS-WIDE 128 dataset - feature dimension is 4

Dimension MLkNN IBLR_ML BRkNN DMLkNN RLkNN

PCA 0.098 0.106 0.128 0.097 0.1422
Hamming 0.096 0.103 0.126 0.095 0.1396
Euclid. Y 0.097 0.104 0.126 0.095 0.1403
Euclid. X 0.098 0.106 0.128 0.097 0.142

GH 0.096 0.103 0.126 0.095 0.1394
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6 Conclusion

•For multilabel problems, labels are correlated

•Generalized hamming distance captures the correlation between the labels

•The results show that the proposed method consistently outperforms other di-
mensionality reduction methods.
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