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Problem Statement
DNN trained on third-person actions do not adapt
to egocentric actions due to a large difference in
size of visible objects. Another complexity is mul-
tiple action categories. This work unifies the fea-
ture learning for multiple action categories using a
generic two-stream architecture.
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Actions with hand-object interaction(take) and with-
out(walking) in two different view streams.

Contributions
1. Deep neural network trained on third person

videos do not adapt to egocentric action due
to large difference in size of the visible objects.

After cropping and resizing the objects be-

come comparable to the objects in third person

videos.

2. We propose curriculum learning by merging
similar but opposite actions while training
CNN.

3. Proposed framework is generic to all categories
of egocentric actions.

Related Work
Earlier works on first-person action recognition use
hands and objects as important cues.[1, 2] On the
other end many works only use motion information
for first-person action recognition.[3, 4] State of the
art (SoTA) techniques focus only on one specific cat-
egory of action classes.
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Results and Discussion

Dataset Subjects Frames Classes Accuracy

Accuracy comparison
of our method with
SoTA and statistics of
egocentric video
datasets

Current Ours

GTEA [1] 4 31,253 11 68.50[5] 82.71
EGTEA+ [1] 32 1,055,937 19 NA 66
Kitchen [6] 7 48,117 29 66.23[5] 71.92
ADL [2] 5 93,293 21 37.58[5] 44.13
UTE [7] 2 208,230 21 60.17[5] 65.12
HUJI [8] NA 1,338,606 14 86[8] 93.92
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91 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 93 0 1 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 87 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 92 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 0 2 1 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 93 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 96 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 91 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 95 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 71 0 16 1 1 2 0 0 0 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 17 15 3 40 1 0 19 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 75 4 1 9 1 1 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 93 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 14 2 66 0 1 11 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 8 2 1 70 1 5 0 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 11 0 9 75 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 10 0 87 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 18 1 0 8 3 0 60 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 97

Top and bottom rows show the visualization of normal and
resized inputs respectively for ‘close’, ‘open’, and ‘take’
actions column-wise.

Applicability in real life setting where different action cate-
gories are present:
To validate the applicability of our method, we use mixed samples
from GTEA [1] and HUJI [8] dataset. From the confusion matrix
it is evident that the proposed network does not seem to have any
confusion in the different ca8tegory of actions.
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Top and bottom of each subfigure shows predicted
and ground truth sequence respectively.
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