Blind Image Quality Assessment with a Probabilistic Quality Representation

Hui Zeng¹, Lei Zhang¹, Alan C. Bovik² ¹Department of Computing, The Hong Kong Polytechnic University ²Department of Electrical and Computer Engineering, The University of Texas at Austin

Outline

Introduction

• Probabilistic quality representation

• Experiments

Introduction

• Existing BIQA methods learn to regress scalar quality scores

Introduction

• An image will receive divergent subjective scores from different human raters.

The average standard deviation on the LIVE Challenge database is 19.27 on the MOS scale of [0,100].

- Limitation: The scalar MOS cannot adequately represent subjective property of human perception on image quality.
- **Challenge:** the score distributions are unavailable on existing IQA databases.

Introduction

• Our idea:

 Propose a probabilistic quality representation (PQR) to approximately describe the subjective score distribution
Train model using the vectorized PQR instead of scalar MOS

Expected outcomes:

Faster convergence speedhigher prediction accuracy

Overall framework

• Step 1: quality anchors

➢ Normalize the MOS to [0,1]

Divide the score range into M equal bins

> Define the midpoints of bins as quality anchors $\{c^m\}_{m=1}^M$

 \mathbf{y}_n

Step 2: probabilistic representation

> Two constraints: 1. Smaller distance \rightarrow higher probability 2. All probabilities sum to 1 $q_n^m = \frac{\exp(-\beta || y_n - c^m ||^2)}{\sum_{i=1}^{M} \exp(-\beta || y_n - c^i ||^2)}$

i=1

Probabilistic representation

- Step 3: reverse mapping
- PQR vectors should be able to mapped back to scalar quality scores for evaluation

> Linear SVM minimization: $err = \frac{1}{N} \sum ||$

$$r = \frac{1}{N} \sum_{n=1}^{N} ||h(\mathbf{q}_n) - y_n||^2$$

Negligible error:

 $err = \frac{1}{N} \sum_{n=1}^{N} |h(\mathbf{q}_n) - y_n| < 0.01$

Probabilistic representation

- Network training with PQR
- Loss function:

$$\min \frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} -q_n^m \log q_n^m$$

- Benefits:
- 1. Richer information (vectorized representation), stabilizing the training process, better generalization
- 2. Enable to use softmax cross-entropy for network training: faster convergence than MSE

- Four databases:
 - LIVE Challenge, LIVE, CSIQ, TID2013
- Three base CNN models:
 - AlexNet
 - ResNet50
 - A shallow CNN (S_CNN) training from scratch
- Two metrics:
 - median SRCC and PCC over 10 times repetitions
- Random crops for data augmentation

Comparison Against Scalar Regression

Higher accuracy

30

CNN model	Representation	LIVE-C		LIVE		CSIQ		TID2013	
		SRCC	PLCC	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC
AlexNet	SQR	0.7658	0.8074	0.9319	0.9462	0.7965	0.8405	0.5362	0.6136
	PQR	0.8075	0.8357	0.9554	0.9638	0.8713	0.8958	0.5742	0.6687
ResNet50	SQR	0.8236	0.8680	0.9468	0.9527	0.8217	0.8713	0.6406	0.7068
	PQR	0.8568	0.8822	0.9653	0.9714	0.8728	0.9010	0.7399	0.7980
S_CNN	SQR	0.6582	0.6729	0.9450	0.9455	0.8787	0.8987	0.6526	0.6921
	PQR	0.6766	0.7032	0.9637	0.9656	0.9080	0.9267	0.6921	0.7497

- Pre-trained models (AlexNet and ResNet) have no advantages on the three legacy databases (LIVE, CSIQ and TID2013)
- Two possible reasons:
 - The legacy databases: synthetic distortion, limited degradation levels, homogeneous LIVE Challenge: complex combinations of distortion, inhomogeneous
 - Domain transferability: The LIVE Challenge and ImageNet have more statistical similarity than the legacy databases

• Comparison with the state-of-the-art on LIVE Challenge

Methods	SRCC	PLCC
DIIVINE [1]	0.58 ± 0.03	0.60 ± 0.03
CORNIA [2]	0.63 ± 0.04	0.66 ± 0.04
BRISQUE [3]	0.61 ± 0.03	0.65 ± 0.04
NIQE [22]	0.43 ± 0.03	0.48 ± 0.03
HOSA 8	0.66 ± 0.04	0.68 ± 0.03
FRIQUEE-ALL 5	0.69 ± 0.03	0.71 ± 0.03
Bosse et al. [10]*	0.67	0.68
PQR (AlexNet)	0.81 ± 0.01	0.84 ± 0.01
PQR (ResNet50)	$\textbf{0.86} \pm \textbf{0.01}$	$\textbf{0.88} \pm \textbf{0.01}$
PQR (S_CNN)	0.68 ± 0.03	0.70 ± 0.03

Leading performance on the LIVE Challenge database

• Scatter plot of prediction vs. MOS on LIVE-Challenge

Comparisons on images having very low or high MOS

MOS: 7.4 FRIQUEE: 44.1 S_CNN: 29.6 AlexNet: 16.9 ResNet50: 12.9 MOS: 10.7 FRIQUEE: 48.4 S_CNN: 44.8 AlexNet: 21.3 ResNet50: 17.1 MOS: 74.0 FRIQUEE: 49.2 S_CNN: 47.7 AlexNet: 62.3 ResNet50: 70.9 MOS: 83.5 FRIQUEE: 64.3 S_CNN: 40.9 AlexNet: 84.0 ResNet50: 84.4

Our ResNet50 model makes the most accurate predictions.

More details and toolbox

 More details and analysis can be found in our technical report (12 page version):

https://arxiv.org/abs/1708.08190

A BIQA Matlab toolbox for easy implementation and fair comparison, containing 8 methods, 3 CNN models and 4 databases:

https://github.com/HuiZeng/BIQA_Toolbox

Thanks for your time!

Q&A

Technical Report

Toolbox