

Xiang Huang^{1,*}, Kuan He², Seunghwan Yoo², Oliver Cossairt², Katsaggelos Aggelos², Nicola Ferrier¹, and Mark Hereld¹ NORTHWESTERN ¹Mathematics and Computer Science Division, Argonne National Lab., USA ²Department of EECS, Northwestern University, USA UNIVERSITY *Email: xianghuang@gmail.com *Web: http://xianghuang.net This project was supported by U.S. Dept. of Energy, Contract# DE-AC02-06CH11357

Key Contributions

A fast primal-dual Interior Point Method (IPM) with A novel pre-conditioner to compute Newton direction > A careful starting point suitable for our IPM > A simple yet effective prediction-correction scheme

Problem Formulation

Goal: reconstruct a sparse signal $\mathbf{x} \in \mathbb{R}^N$ from its linear observation $\mathbf{b} = \mathbf{A}\mathbf{x} \in \mathbb{R}^M$, by solving the L_1 -norm regularized optimization problem:

$$\min_{\mathbf{x}\in\mathbb{R}^N} \quad \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \tau \|\mathbf{x}\|_1, \quad (BPDN)$$

We are interested in the case of $x \ge 0$,

$$\min_{\mathbf{x} \in \mathbb{R}^{N}} \quad \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2} + \tau \mathbf{e}^{T} \mathbf{x}$$

$$\text{(BPDN+)}$$

$$\text{s.t.} \quad \mathbf{x} \ge \mathbf{0}.$$

where **e** is an all one vector. This is because:

- pixel intensities from photon counts are ≥ 0
- algorithms for (BPDN+) can be used for (BPDN)
- by splitting $\mathbf{x} = \mathbf{x}^+ \mathbf{x}^-$, where \mathbf{x}^+ , $\mathbf{x}^- \ge \mathbf{0}$.

Solvers Overview

- 1st order gradient methods: Iterative Shrinkage / Thresholding (TwIST, FISTA), Gradient Projection (GPSR), Augmented Lagrange Multiplier (ADMM).
- 2nd order Hessian methods: IPM, Primal-dual IPM.

Fig. 1. Gradient based (cheap step but more iters) vs Hessian based methods (expensive step but less iters). Courtesy of S. Boyd etc.

An Interior Point Method for Nonnegative Sparse Signal Reconstruction

Our Primal-dual IPM

We solve (BPDN+) from its modified KKT system: $\mathbf{A}^T \mathbf{A} \mathbf{x} - \mathbf{s} - \mathbf{A}^T \mathbf{b} + \tau \mathbf{e} = \mathbf{0}$ (22)

$$\mathbf{A}\mathbf{X} - \mathbf{S} - \mathbf{A} \quad \mathbf{D} + 7\mathbf{e} = \mathbf{0}, \tag{2a}$$

$$\mathbf{XSe} = \sigma \mu \mathbf{e}, \qquad (2b)$$

$$(\mathbf{x},\mathbf{s}) \ge \mathbf{0},\tag{2c}$$

where $\mathbf{s} \in \mathbb{R}^N$ is the dual variable, $\mathbf{X} = \text{diag}(\mathbf{x}), \mathbf{S} =$ $diag(\mathbf{s}), \sigma \in [0,1]$ is a centering parameter, and $\mu =$ $\frac{\mathbf{x}^{\mathrm{T}}\mathbf{s}}{N} \rightarrow 0$ when converges.

We find the Newton direction $(\Delta \mathbf{x}, \Delta \mathbf{s})$ at (\mathbf{x}, \mathbf{s}) from:

$$\mathbf{A}^{T} \mathbf{A} \Delta \mathbf{x} - \Delta \mathbf{s} = \mathbf{r}_{d}, \qquad (3a)$$
$$\mathbf{S} \Delta \mathbf{x} + \mathbf{X} \Delta \mathbf{s} = \mathbf{r}_{c}, \qquad (3b)$$

where \mathbf{r}_d and \mathbf{r}_c are gradient and slackness residuals:

$$\mathbf{r}_d \coloneqq \mathbf{s} - \nabla h(\mathbf{x}), \tag{4a}$$

$$\mathbf{r}_c \coloneqq \sigma \mu \mathbf{e} - \mathbf{XSe}. \tag{4b}$$

 $h(\mathbf{x})$ is the objective function of (BPDN+), its gradient

 $\nabla h(\mathbf{x}) = \mathbf{A}^T \mathbf{A} \mathbf{x} - \mathbf{A}^T \mathbf{b} + \tau \mathbf{e}$

We iteratively update $(\mathbf{x} \leftarrow \mathbf{x} + \alpha_n \Delta \mathbf{x}, \mathbf{s} \leftarrow \mathbf{s} + \alpha_d \Delta \mathbf{s})$ use Algorithm 1.

Algorithm 1 Primal Dual Preconditioned IPM Framework

Inputs: choose $(\mathbf{x}^0, \mathbf{s}^0) > \mathbf{0}$ from Section 2.1, stop accuracy ϵ (e.g. 1e - 6), and maximum iteration number k_{max} . for $k = 1, 2, ..., k_{\max}$ do Perform Prediction Step: set $\sigma \leftarrow 0.01$. $(\mathbf{x}^k, \mathbf{s}^k, \alpha_p, \alpha_d) = \text{UPDATE}(\mathbf{x}^{k-1}, \mathbf{s}^{k-1}, \sigma)$ if $\min(\alpha_p, \alpha_d) \leq 0.1$ then Perform Correction Step: set $\sigma \leftarrow 0.99$. $(\mathbf{x}^k, \mathbf{s}^k, \alpha_p, \alpha_d) = \text{UPDATE}(\mathbf{x}^{k-1}, \mathbf{s}^{k-1}, \sigma)$ if $\mu_k \leq \epsilon h(\mathbf{x}^k)$ and $\|\mathbf{r}_d^k\| \leq \epsilon$ then Break Output: \mathbf{x}^{κ} function UPDATE $(\mathbf{x}^{k-1}, \mathbf{s}^{k-1}, \sigma)$ Compute Δx , Δs with σ , x^{k-1} , s^{k-1} use Section 2.2 Compute α_p, α_d with $\mathbf{x}^{k-1}, \mathbf{s}^{k-1}, \Delta \mathbf{x}, \Delta \mathbf{s}$ use Section 2.3 Update $(\mathbf{x}^k, \mathbf{s}^k) \leftarrow (\mathbf{x}^{k-1} + \alpha_p \Delta \mathbf{x}, \mathbf{s}^{k-1} + \alpha_d \Delta \mathbf{s}).$ return $(\mathbf{x}^k, \mathbf{s}^k, \alpha_p, \alpha_d)$

Our Preconditioner

Most computation is spent on solving Newton Eq.(3). We first eliminate Δs and solve Δx :

 $(\mathbf{D}^{-1} + \mathbf{A}^T \mathbf{A})\Delta \mathbf{x} = \sigma \mu \mathbf{X}^{-1} \mathbf{e} - \nabla h(\mathbf{x})$

where $\mathbf{D} = \mathbf{X}\mathbf{S}^{-1}$. We solve it by conjugate gradient method with a diagonal plus rank 1 preconditioner M:

$$\mathbf{M} = \mathbf{D}^{-1} + \mathbf{v}\mathbf{v}^{\mathrm{T}},$$

where \mathbf{v} is the scaled eigenvector of $\mathbf{A}^{T}\mathbf{A}$. This is good for deconvolution case where **A** is a circulant matrix. Note M^{-1} is easy by Sherman-Morrison formula:

$$\mathbf{M}^{-1} = \mathbf{D} - \frac{\mathbf{D}\mathbf{v}\mathbf{v}^{\mathsf{T}}\mathbf{D}}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{D}\mathbf{v}}.$$

Experiments

Reconstruct 3D volumetric image of 256 × 256 × 16 from its 2D observation of 256×256 : (*N* = 106, *M* = 6.5 × 104) $b(u,v) = \sum psf(u,v;z) * x(u,v;z)$ Quantitative Comparison ---- IPM-ours -----IPM-ours ---- IPM-FOU -TwIST — Twist zoomed in 10 10 2000 1500 2500 100 computation time (seconds) computation time (seconds) (a) Objective Function Value vs Time -IPM-ours ---- IPM-FOU -TwIST 뜅 40 <u>ଡ</u> 20 zoomed in -IPM-ours ---- IPM-FOU TwIST 2000 2500 1500 Computation time (seconds) Computation time (seconds) (b) PSNR vs Time

Fig. 2: (a) Comparison of the objective function values in Eq. (BPDN+) over time. (b) Comparison of the PSNRs over time.

Fig. 3: Comparison of the results for the three algorithms to the ground truth of 3D microtubule. Left column: 3D volumetric image results, showing as both point clouds and 2D projections to xy,yz,xz planes. Right column: the projection onto the xy plane. Intensities from low to high are mapped from blue to red.

[IPM-Fou] K. Fountoulakis, J. Gondzio, and P. Zhlobich, "Matrixfree interior point method for compressed sensing problems," Mathematical Programming Computation, vol. 6, no. 1, pp. 1–31, 2014

[[TwIST]] J. Bioucas-Dias and M. Figueiredo, "A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration," IEEE Trans. on Image Processing, vol. 16, no. 12, pp. 2992–3004, Dec 2007.