.
. An Interior Point Method for Nonnegative Sparse Signal Reconstruction
Argonne Xiang Huang®”, Kuan He?, Seunghwan Yoo?, Oliver Cossairt?, Katsaggelos Aggelos?, Nicola Ferriert, and Mark Hereld?
NATIORAL LARORATE 1IMathematics and Computer Science Division, Argonne National Lab., USA 2Department of EECS, Northwestern University, USA ki s
q *Emall: xianghuang@gmail.com  *Web: http://xianghuang.net This project was supported by U.S. Dept. of Energy, Contract# DE-AC02-06CH11357 |
e N

Key Contributions

A fast primal-dual Interior Point Method (IPM) with
» A novel pre-conditioner to compute Newton direction
» A careful starting point suitable for our IPM

> A simple yet effective prediction-correction scheme
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Goal: reconstruct a sparse signal x € RY from its
linear observation b = Ax € R, by solving the
L,-norm regularized optimization problem:
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Problem Formulation

1
5 I1Ax = b|" + 7|,

minN (BPDN)
XER
We are interested In the case of x > 0,
1
min - ||Ax — b||* + re’ x
xcRN 2 (BPDN+)
S.t. x > 0.

where e Is an all one vector. This Is because:
* pixel intensities from photon counts are > 0
 algorithms for (BPDN+) can be used for (BPDN)

\by splitting x = x " _x ", wherex',x > 0. /

4 N

o 1storder gradient methods: Iterative Shrinkage /
Thresholding (TwIST, FISTA), Gradient Projection
(GPSR), Augmented Lagrange Multiplier (ADMM).

e 2nd order Hessian methods: IPM, Primal-dual IPM.

Solvers Overview
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We solve (BPDN+) from its modified KKT system:

Our Primal-dual IPM

A"Ax—s—A'b+71e=0. (2a)
XSe = oue, (2b)
(x,s) > 0, (2¢)

where s € R" is the dual variable, X = diag(x), S =
diag(s), o € [0,1] is a centering parameter, and u =

x's

> 0 when converges.

We find the Newton direction (Ax, As) at (x,s) from:
A" AAx — As =y, (3a)
SAx 4+ XAs =r,, (3b)

where r,; and r_are gradient and slackness residuals:
rg :=s— Vh(x), (4a)
r.:= oue — XSe. (4b)

h(x) Is the objective function of (BPDN+), Its gradient
Vh(x) = A"Ax — A'b + Te

We iteratively update (x « x + a,AX, s < s + a;As)
use Algorithm 1.

Algorithm 1 Primal Dual Preconditioned IPM Framework

Inputs: choose (x",s") > 0 from Section 2.1, stop accu-

racy € (e.g. le — 6), and maximum iteration number k..
for £ =1.2,.... kyax do
Perform Prediction Step: set o <— 0.01.
(Xk, s”. Ny, () = UPDATE(x" ! sk~ 1
if min(a,, ay) < 0.1 then
Perform Correction Step: set o <— 0.99.
(Xk, s”. Qp, ) = UPDATE(x"~1,s*"1 o)

o)

if 11, < eh(x") and ||v%|| < € then
Break
Output: x*
function UPDATE(x" 1 s*~1 o)

Compute Ax, As with o, x*~1, s*¥~1 use Section 2.2

Compute «,, g with x*~1 s¥=1 Ax As use Sec-
tion 2.3

a4 R

Most computation Is spent on solving Newton Eq.(3).
We first eliminate As and solve Ax:

(D_1 + ATA)AX — ouX le — Vh(x)
where D = XS/, We solve it by conjugate gradient
method with a diagonal plus rank 1 preconditioner M:
M=D"'+ vvT,
where v iIs the scaled eigenvector of ATA. This is good

for deconvolution case where A IS a circulant matrix.
Note M~/ Is easy by Sherman-Morrison formula:

Our Preconditioner

Fig. 1. Gradient based (cheap stgﬁ) but more iters) vs Hessian based
@ethods (expensive step but less iters). Courtesy of S. Boyd etc. /

Update (x",s") «+ (x*71 + o, Ax,s" 71 + o As).

\ return (x",s", a,, ag) /

M- = D Dvv!D
\_ B 1+ viDv -
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Reconstruct 3D volumetric image of 256 X 256 X 16
from its 2D observation of 256 X 256: (v = 106,M = 6.5 x 104)

N
b(u,v) = E psf(u,v;z) *x(u,v; z)
z=1
» Quantitative Comparison
3 , | I Ij—IPI‘;fI—ours | ', ——IPM-ours
< 1051 =-=-IPM-FOU|{ 1051 --=-IPM-FOU |-
s - TwIST H TWIST
% 100i zoomed inl 100\"-“\
R N — = P R —
e - -

computation time (seconds) computation time (seconds)

(a) Objective Function Value vs Time
' i 80

——IPM-ours | |
60 + === |PM-FOU 60
TwiIST |
S 40| 40
g e - ; —
& 205 zoomed in, < !
[ _ ! —— IPM-ours
2 | O —-—-IPM-FOU ||
I | J TwIST
_20 L e 1 L = — | _20 :
0 500 1000 1500 2000 2500 0 10 20
Computation time (seconds) Computation time (seconds)

(b) PSNR vs Time

Fig. 2: (a) Comparison of the objective function values in Eg.

(BPDN+) over time. (b) Comparison of the PSNRs over time. /
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Fig. 3: Comparison of the results for the three algorithms to the
ground truth of 3D microtubule. Left column: 3D volumetric
Image results, showing as both point clouds and 2D projections to
Xy,yz,xz planes. Right column: the projection onto the xy plane.
Intensities from low to high are mapped from blue to red.
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