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Our Preconditioner
A fast primal-dual Interior Point Method (IPM) with
A novel pre-conditioner to compute Newton direction
A careful starting point suitable for our IPM
A simple yet effective prediction-correction scheme

Our Primal-dual IPM

Solvers Overview
• 1st order gradient methods: Iterative Shrinkage / 

Thresholding (TwIST, FISTA), Gradient Projection 
(GPSR), Augmented Lagrange Multiplier (ADMM).

• 2nd order Hessian methods: IPM, Primal-dual IPM. 

Fig. 1. Gradient based (cheap step but more iters) vs Hessian based 
methods (expensive step but less iters). Courtesy of S. Boyd etc.

Goal: reconstruct a sparse signal 𝐱𝐱 ∊ ℝ𝑁𝑁 from its 
linear observation 𝐛𝐛 = 𝐀𝐀𝐱𝐱 ∊ ℝ𝑀𝑀, by solving the 
𝐿𝐿1-norm regularized optimization problem:

We are interested in the case of 𝑥𝑥 ≥ 0,

where 𝐞𝐞 is an all one vector. This is because:
• pixel intensities from photon counts are ≥ 0
• algorithms for (BPDN+) can be used for (BPDN) 

by splitting 𝐱𝐱 = 𝐱𝐱 + −𝐱𝐱 −, where 𝐱𝐱+ , 𝐱𝐱− ≥ 𝟎𝟎.

Problem Formulation

We solve (BPDN+) from its modified KKT system:

where 𝐬𝐬 ∊ ℝ𝑁𝑁 is the dual variable, 𝐗𝐗 = diag 𝐱𝐱 , 𝐒𝐒 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐬𝐬 , σ ∊ [0,1] is a centering parameter, and 𝜇𝜇 =
𝐱𝐱𝐓𝐓𝐬𝐬
𝑁𝑁
→ 0 when converges.

We find the Newton direction (∆𝐱𝐱,∆𝐬𝐬) at (𝐱𝐱, 𝐬𝐬) from:

ℎ(𝐱𝐱) is the objective function of (BPDN+), its gradient

where 𝐫𝐫𝑑𝑑 and 𝐫𝐫𝑐𝑐 are gradient and slackness residuals:

We iteratively update 𝐱𝐱 ← 𝐱𝐱 + α𝑝𝑝∆𝐱𝐱, 𝐬𝐬 ← 𝐬𝐬 + α𝑑𝑑∆𝐬𝐬
use Algorithm 1.

Most computation is spent on solving Newton Eq.(3). 
We first eliminate ∆𝐬𝐬 and solve ∆𝐱𝐱: 

where 𝐃𝐃 = 𝐗𝐗𝐒𝐒−1. We solve it by conjugate gradient 
method with a diagonal plus rank 1 preconditioner 𝐌𝐌:

𝐌𝐌 = 𝐃𝐃−1 + 𝐯𝐯𝐯𝐯𝐓𝐓,
where 𝐯𝐯 is the scaled eigenvector of 𝐀𝐀𝐓𝐓𝐀𝐀. This is good 
for deconvolution case where 𝐀𝐀 is a circulant matrix.
Note 𝐌𝐌−1 is easy by Sherman-Morrison formula:

𝐌𝐌−1 = 𝐃𝐃 −
𝐃𝐃𝐯𝐯𝐯𝐯𝐓𝐓𝐃𝐃

1 + 𝐯𝐯𝐓𝐓𝐃𝐃𝐯𝐯
.

Experiments
Reconstruct 3D volumetric image of 256 × 256 × 16
from its 2D observation of 256 × 256:

𝑏𝑏 𝑢𝑢, 𝑣𝑣 = �
𝑧𝑧=1
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𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢, 𝑣𝑣; 𝑧𝑧) ∗ 𝑥𝑥(𝑢𝑢, 𝑣𝑣; 𝑧𝑧)

 Quantitative Comparison

 Qualitative Comparison

Fig. 2: (a) Comparison of the objective function values in Eq. 
(BPDN+) over time. (b) Comparison of the PSNRs over time.

Fig. 3: Comparison of the results for the three algorithms to the 
ground truth of 3D microtubule. Left column: 3D volumetric 
image results, showing as both point clouds and 2D projections to 
xy,yz,xz planes. Right column: the projection onto the xy plane. 
Intensities from low to high are mapped from blue to red.

(𝑁𝑁 = 106,𝑀𝑀 = 6.5 × 104)
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