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https://www.youtube.com/watch?v=9r9xyw7fmTg
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Overview of The Method
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S1,S,, ..., S1¢ denote superpixels in five consecutive frames.

Given a new frame at time t+1, we compute the similarity of nearby
superpixels within that frame and the similarity of superpixels in two

consecutive frames.
If their similarity is large enough, two superpxiels will be connected

and thus belong to the same superpixel group. DUN
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Discriminative Superpixel Group Mining
And Temporal Window Representation

Discriminative
Superpixel Groups

0,0/00/0,0.000,

Temporal Window

-

L?L e -

~
Q~
9x8 Matrix of Similarities O } High Values
. 1 8 Max 8
[5 ] @) } Low Values E> @
9 Q -
O
O } Low Values
- O

(A

O
c
Z
O
m



- —

'\
i

}\».=,=.,- Mndns .o {0 ] ...l..l.

L I T H.H

&nLversity
f Dundee

Discriminative Superpixel Groups [
\ 1 . - - - - ')
Add Oil
Peer
Cucumber
Place
Ingredient
into Bowl

DUNDEE



Method

Precision

Recall | f-measure |

HOG
HOF
MBH

Ours

Absolute Tracklets (AT)

AT. HOF. MBH
AT, HOG, HOF, MBH

424+ 2
50+ 3
484+ 3
5445
35+5
39+ 4
66+ 3

43+ 4
49+ 3
47+ 4
5245
33+ 6
58+4
68+ 3

43
49
47
53
54
58
67

Comparison with multiple visual features and their combinations (Sebastian Stein and

Stephen J. McKenna CVIU 2017).

| Method | Accuracy | Look Back (seconds) | Look Ahead (seconds) |

S-CNN 4+ LSTM [10] 060.3 — —

S-CNN [10] 060.6 2 0

Bi-LSTM [11] 70.9 — —

Dilated TCN [11] T1.1 751 751

ST-CNN [10] 71.4 5 5
ST-CNN+Seg [10] 72.0 whole video

ED-TCN [11] 73.4 26! 261

Ours 76.5 2.5 2.5

Comparison with deep learning methods (Colin Lea et al. ECCV 2016 [10], CVPR

2017[11]).




w l '% tmversity

7 | of Dundee “

N

| = W‘lr'
= |

% Superpixel groups are able to capture fine-grained motion and object
transformation information which is often missing in previous methods.

* Manual annotations for object detections are not required.

% Outperformed methods with comparable temporal windows, and it
outperforms CNN methods that use longer temporal windows.

*» Method has a directly interpretable representation and can be applied to
on-line recognition tasks due to the sequential nature of feature
computation.
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