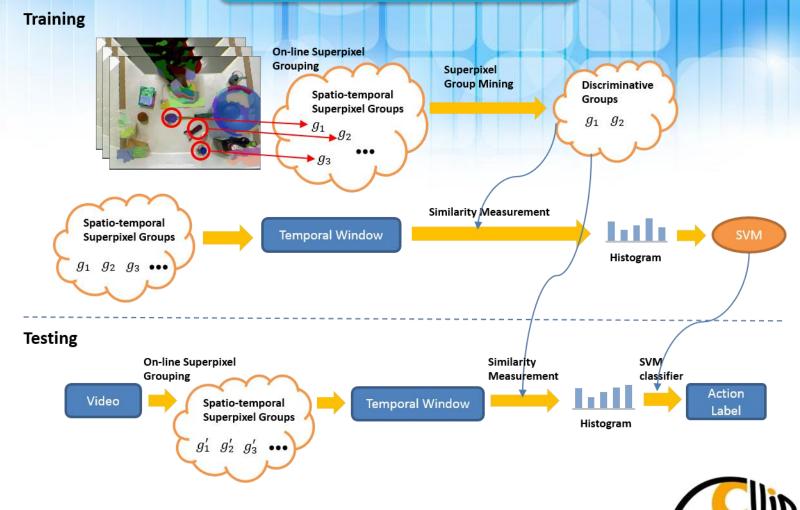


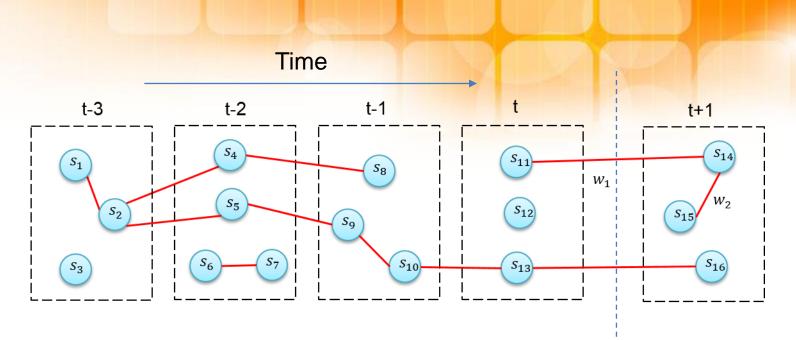
Sequential Recognition of Manipulation Actions Using Discriminative Superpixel Group Mining

Tianjun Huang, Stephen McKenna Computer Vision and Image Processing Group School of Science and Engineering University of Dundee, UK

50 Salads Dataset

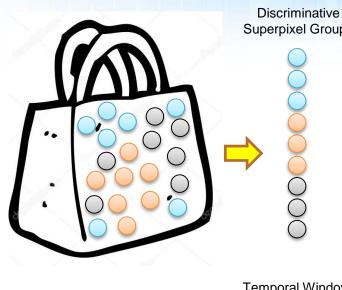

NULL add_oil give_pepper dress_salad mix_dressing mix_ingredients peel_cucumber cut_into_pieces place_into_bowl serve_salad

https://www.youtube.com/watch?v=9r9xyw7fmTg

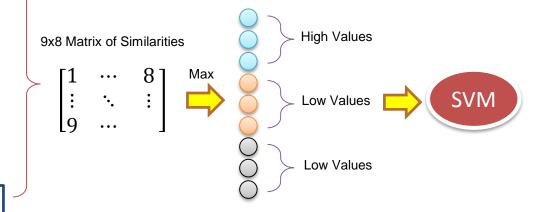

Overview of The Method

Spatio-temporal Superpixel Grouping

 s_1, s_2, \dots, s_{16} denote superpixels in five consecutive frames.


Given a new frame at time t+1, we compute the similarity of nearby superpixels within that frame and the similarity of superpixels in two consecutive frames.

If their similarity is large enough, two superpxiels will be connected and thus belong to the same superpixel group.



Discriminative Superpixel Group Mining And Temporal Window Representation

Superpixel Groups

Temporal Window

Discriminative Superpixel Groups

Add Oil

Peer Cucumber

Place Ingredient into Bowl

Results

Method	Precision	Recall	f-measure
Absolute Tracklets (AT)	42 ± 2	43 ± 4	43
HOG	50 ± 3	49 ± 3	49
HOF	48 ± 3	47 ± 4	47
MBH	54 ± 5	52 ± 5	53
AT, HOF, MBH	55 ± 5	53 ± 6	54
AT, HOG, HOF, MBH	59 ± 4	58 ± 4	58
Ours	66 ± 3	68 ± 3	67

Comparison with multiple visual features and their combinations (Sebastian Stein and Stephen J. McKenna CVIU 2017).

Method	Accuracy	Look Back (seconds)	Look Ahead (seconds)
S-CNN + LSTM [10]	66.3	_	_
S-CNN [10]	66.6	2	0
Bi-LSTM [11]	70.9	_	_
Dilated TCN [11]	71.1	75 ¹	75 ¹
ST-CNN [10]	71.4	5	5
ST-CNN+Seg [10]	72.0	whole video	
ED-TCN [11]	73.4	26 ¹	26 ¹
Ours	76.5	2.5	2.5

Comparison with deep learning methods (Colin Lea et al. ECCV 2016 [10], CVPR 2017[11]).

Conclusion

- Superpixel groups are able to capture fine-grained motion and object transformation information which is often missing in previous methods.
- Manual annotations for object detections are not required.
- Outperformed methods with comparable temporal windows, and it outperforms CNN methods that use longer temporal windows.
- Method has a directly interpretable representation and can be applied to on-line recognition tasks due to the sequential nature of feature computation.

Training

Tianjun Huang, email: <u>t.huang@dundee.ac.uk</u> Stephen McKenna, email: stephen@computing.dundee.ac.uk

