

Tiffany Ly[†], Jeremy Thompson[‡], Tajie Harris[‡], and Scott T. Acton[†] [†]Virginia Imaging and Video Analysis, C.L. Brown Electrical and Computer Engineering [‡] Center for Brain Immunology and Glia, Department of Neuroscience

Virginia Image and Video Analysis

Microglia

- Tissue resident macrophages, or immune cells, of the brain
- Surveillant functions: monitoring synaptic activity, sensing invading pathogens, and responding to injury

https://medical-dictionary.thefreedictionary.com/Microglial%2Bcells

Microglia

- Injuries and diseases associated with microglia:
 - Trauma
 - Stroke
 - Alzheimer's
 - Other neurodegenerative diseases

Microglia morphology and behavior are indicative of the physiological state of the brain. Little is known about how decrease in movement affects their functionality in the brain.

Segmentation of microglia

- Microglia have complex morphology
- Numerous 3D images \rightarrow big data
- Images have intensity inhomogeneity
- Analyzing directly from grayscale is challenging

Automatic 3D segmentation technique specific to microglia!

Geometric active contour

Level Set method $C = \{(x) | \phi(x) = 0\}$ $x \in \Omega, position in image domain$

- Minimize an energy functional to evolve level set, $\phi,$ towards the object boundary

 $\phi = \operatorname{argmin} \varepsilon (f(x), \phi(x)),$

Solved iteratively via gradient descent

Tubular and Blob information

- Eigenvectors of the Hessian matrix, H_{ϑ} , are ordered by increasing magnitude. $|\lambda_1| \leq |\lambda_2| \leq |\lambda_3| \gg 0$
- Frangi's vesselness and blobness:

	λ_1	λ_2	λ_3
Vesselness	Low	High (-)	High (-)
Blobness	High (-)	High (-)	High (-)

Tubular vector flow field and Blob vector flow field Evolve along the width and axis of contour

$$\varepsilon_{TuFF}(\phi_{1}) = \varepsilon_{evolve}(\phi_{1}) + \varepsilon_{reg}(\phi_{1}) + \varepsilon_{attr}(\phi_{1}) + \varepsilon_{repel}(\phi_{1})$$

$$\varepsilon_{BFF}(\phi_{2}) = \varepsilon_{evolve}(\phi_{2}) + \varepsilon_{reg}(\phi_{2}) + \varepsilon_{attr}(\phi_{2}) + \varepsilon_{repel}(\phi_{2})$$

$$(\phi) = -\sum_{i} \int_{\Omega} a_{i}(\mathbf{x}) \left\langle \mathbf{v}_{i}(\mathbf{x}), \frac{\nabla \phi(\mathbf{x})}{|\nabla \phi(\mathbf{x})|} \right\rangle^{2} d\mathbf{x} + v_{1} \int_{\Omega} |\nabla H(\phi)| d\mathbf{x}$$

Orthogonal vector flow fields, v_2 and v_3

The Coupled TuFF-BFF algorithm for 3D Segmentation of Microglia Attraction force

- Connect disjoint parts
- Discontinuities caused by signal intensity loss
- Vector field from disjoint part pointed towards ROI

 $\begin{aligned} \varepsilon_{TuFF}(\phi_1) &= \varepsilon_{reg}(\phi_1) + \varepsilon_{evolve}(\phi_1) + \varepsilon_{attr}(\phi_1) + \varepsilon_{repel}(\phi_2) \\ \varepsilon_{BFF}(\phi_2) &= \varepsilon_{reg}(\phi_2) + \varepsilon_{evolve}(\phi_2) + \varepsilon_{attr}(\phi_2) + \varepsilon_{repel}(\phi_1) \end{aligned}$

Simultaneously and separately segment tubular and blob structure to minimize overlap

 $\varepsilon_{TuFF}(\phi_1) = \varepsilon_{reg}(\phi_1) + \varepsilon_{evolve}(\phi_1) + \varepsilon_{attr}(\phi_1) + \varepsilon_{repel}(\phi_2)$ $\varepsilon_{BFF}(\phi_2) = \varepsilon_{reg}(\phi_2) + \varepsilon_{evolve}(\phi_2) + \varepsilon_{attr}(\phi_2) + \varepsilon_{repel}(\phi_1)$

Minimize the energy functional by iteratively solving for ϕ with $\frac{\partial \phi}{\partial t}$, where t is time parameter. We get the velocity of the level set.

$$\frac{\partial \phi}{\partial t} = F_{reg}(\mathbf{x}) + F_{evolve}(\mathbf{x}) + F_{attr}(\mathbf{x}) + F_{repel}(\mathbf{x})$$

$$F += \frac{\partial \phi_{reg}}{\partial t} + a \frac{\partial \phi_{evolve}}{\partial t} + v_1 \frac{\partial \phi_{attr}}{\partial t} + r \frac{\partial \phi_{repel}}{\partial t}$$

Segmentation results 3D images of microglia, two-photon confocal microscopy, pixel width of ~.2 µm

[1]T. F. Chan, *et al.*, TIP. 2001. [2] S. Mukherjee *et al.*, SPL. 2015

More segmentation results using Tuff-Bff

• Dice coefficient: $2 * \frac{|intersection(A,B)|}{|A|+|B|}$, where A is the ground truth

<u>Average DICE score</u>
Tuff-Bff: .77
Chan-Vese: .58
L2S: .53

Accuracy

	Table 1 Ramification Index					
No.	groundtruth	TuFF-BFF	L2S	Chan-Vese		
#1	8.88	7.88	4.0	7.46		
#2	7.69	10.14	2.1	9.89		
#3	6.54	5.98	4.34	8.76		
#4	9.02	13.6	5.48	12.4		
#5	6.44	7.22	5.26	18.3		
#6	8.60	8.74	3.57	11.0		
#7	9.09	7.70	4.78	12.86		
#8	8.88	7.88	4.0	7.46		
#9	11.18	12.7	7.56	16.48		
MAE:	_	1.49	3.92	3.78		

• Ramification Index [1] : quantifies the extension of the processes from the

 Tuff-Bff algorithm receives the lowest mean absolute error

Extended Work

Segmentation used to create skeleton and graph

Using graph to morph glia

Via Elastic Path2Path [1]

Glia 1

Works Cited

- 1. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, "Multiscale vessel enhancement filtering," in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 1998, pp. 130–137.
- 2. Mukherjee, S., Condron, B., & Acton, S. T. (2015). Tubularity flow field—a technique for automatic neuron segmentation. *IEEE Transactions on Image Processing*, 24(1), 374-389.
- 3. Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998, October). Multiscale vessel enhancement filtering. In *International Conference on Medical Image Computing and Computer-Assisted Intervention* (pp. 130-137). Springer, Berlin, Heidelberg.
- 4. Chan, T. F., & Vese, L. A. (2001). Active contours without edges. *IEEE Transactions on image processing*, *10*(2), 266-277.
- 5. Mukherjee, S., & Acton, S. T. (2015). Region based segmentation in presence of intensity inhomogeneity using legendre polynomials. *IEEE Signal Processing Letters*, 22(3), 298-302.
- 6. Madry, C., Kyrargyri, V., Arancibia-Cárcamo, I. L., Jolivet, R., Kohsaka, S., Bryan, R. M., & Attwell, D. (2018). Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. *Neuron*, *97*(2), 299-312.

Thanks