
Copyright 2018 FUJITSU LABORATORIES LTD.

SPEED-UP OF OBJECT 

DETECTION NEURAL 

NETWORK WITH GPU

Takuya Fukagai1, Kyosuke Maeda2, Satoshi Tanabe1, 
Koichi Shirahata1, Yasumoto Tomita1, Atsushi Ike1, 
Akira Nakagawa1

1 FUJITSU LABORATORIES LTD.
2 FUJITSU SOFTWARE TECHNOLOGIES LTD.

0



Background

Object detection is one of the most useful and basic 
applications of deep neural networks

NN-based methods achieved the highest scores in 
the competitions such as ILSVRC and COCO

 Various detection networks have been proposed

• Faster R-CNN, R-FCN, YOLO, SSD etc. 

High computational complexity

 Accelerators for fast neural network processing

Highly efficient processing

• Domain-specific architecture

• Many cores, specialized cores for NN

• High memory bandwidth

Copyright 2018 FUJITSU LABORATORIES LTD.

GPU (NVIDIA)

TPU (Google) Nervana NNP (Intel)

DLU (FUJITSU)

Fast object detection network processing with NN accelerators

1



Related Work

Many algorithms have been proposed to speed-up the 
calculation of convolution and fully-connected layers in CNN

 Fast convolution algorithms such as Winograd [2016 Lavin et al.], FFT 
[2014 Mathieu et al.], summed area table [2017 Kasagi et al.]

NN compression algorithms such as Column weight pruning [2017 Wang 
et al.]

 Lightweight object detection networks (PVANet [2016 Kim et al.])

 Speed up by redesigning CNN architecture feature extraction part

• Less channels with more layers, adoption of concatenated ReLU, Inception, 
HyperNet [Kong et al. 2016], batch normalization, residual connections

 CNN feature extraction part in object detection networks 
has been accelerated

Copyright 2018 FUJITSU LABORATORIES LTD.

Existing works focus on fast computation of CNN layers

2



Problem

 In detection networks, not only convolution and fully-connected 
layers but also the other processes require fair amount of time

Our evaluation with existing Faster R-CNN implementation (py-faster-
rcnn) shows 27.6% of time is used for outside CNN feature extraction

 These are the common basic processes of detection networks such as 
Faster R-CNN, R-FCN, YOLO, and SSD

Copyright 2018 FUJITSU LABORATORIES LTD.

0

5

10

15

20

25

30

35

40

preprocess,
postprocess

proposal layer convolution layer full connection
layer

other neural
network layers

E
la

p
s
e

d
 t
im

e
 p

e
r 

im
a

g
e

 [
m

s
]

Speed-up of common basic processes becomes more important

Common basic processes

take 27.6% of time

CNN layers can be further 

accelerated by improvements 

of hardware and algorithms

3



Faster R-CNN Architecture

 The common basic processes are executed on CPU 

 preprocessing, proposal layer, and postprocessing

Copyright 2018 FUJITSU LABORATORIES LTD.

We speed up the common basic processes with GPU

output

input picture

Neural Network

Picture preprocessing

Estimation of proposed 

regions (proposal layer)

Estimation of locations and 

kinds of objects 

(Fast R-CNN layer)

proposed 

regions

feature maps

Sorting of the candidate 

regions

Building scored 

candidate regions 

feature maps

proposed regions

Selection of estimated results

preprocessing

postprocessing

NMS of the candidate 

regions

Calculation of feature maps

(CNN layer)

Executed with GPU

Executed with CPU

Proposal Layer

4



Proposal

We propose speed up methods for the common basic 
processes of the detection networks with GPU

We implement the common basic processes with GPU and assign a 
thread for each element to utilize many cores of GPU

• Fuse multiple GPU functions (CUDA kernels) to improve memory locality

• Avoid CPU-GPU data transfer during the common basic processes

We design and implement a high speed parallel sorting and a Non-
Maximum-Suppression (NMS) with GPU

• We design an efficient sort algorithm for sorting candidate regions

• Improve existing GPU-based NMS by skipping unnecessary calculation

Result

Our GPU-accelerated Faster R-CNN processed in 55.2ms per image

 25.5% speed-up compared to py-faster-rcnn in whole time

Copyright 2018 FUJITSU LABORATORIES LTD.5



Preprocessing with GPU

Copyright 2018 FUJITSU LABORATORIES LTD.

Resize input pictures and subtract average RGB values

 A thread is assigned for each output pixel

We process them in a single GPU function (CUDA kernel)

Example Input Image

500 x 375 pixel
600 x 800 pixel

Preprocessed Image

600 x 800 pixel

Resize input 
pictures

Subtract 
average

RGB values

A thread for each output pixel

600 x 800 threads

6



Postprocessing with GPU

Copyright 2018 FUJITSU LABORATORIES LTD.

 Build scored candidates of detected results from network 
outputs, and applies NMS

 A thread is assigned for each candidate region

We process in a single CUDA kernel for each part

Non-Maximum-

Suppression (NMS)
Building scored 

candidates

0.989
0.995

0.990

0.988

0.992

0.996

0.993
0.988

0.989

0.992

0.988

0.9900.992

0.996

0.995

0.990

0.996

0.996

Proposed regions

Differences to be 

added to proposed 

regions

Scores for regions

Process in a single 

CUDA kernel

Process in a single 

CUDA kernel

7



Proposal Layer with GPU

Copyright 2018 FUJITSU LABORATORIES LTD.

 Propose rectangular regions where objects are likely to exist

 A thread is assigned for each element (anchor or candidate region)

We process each part in one or two kernels

Sorting of candidate regions

NMS of candidate regions

Building scored candidate regions 

Proposed 

regions

0.9890.9930.990 0.988

0.992

0.996

0.993

0.996

0.9890.9930.990 0.988

0.992

0.996

Candidate 

regions

Candidate 

regions
Fixed anchor

regions

Sort scored candidate regions and get top 1,000 - 6,000 regions

Select high score regions and suppress overlapping regions

8



Fixed anchor

regions

Proposal Layer with GPU

Copyright 2018 FUJITSU LABORATORIES LTD.

Sorting of candidate regions

NMS of candidate regions

Building scored candidate regions 

Proposed 

regions

0.9890.9930.990 0.988

0.992

0.996

0.993

0.996

0.9890.9930.990 0.988

0.992

0.996

Candidate 

regions

Candidate 

regions
We design and implement a high speed parallel sorting 

and a Non-Maximum-Suppression (NMS) with GPU

 Propose rectangular regions where objects are likely to exist

 A thread is assigned for each element (anchor or candidate region)

We process each part in one or two kernels

Select high score regions and suppress overlapping regions

Sort scored candidate regions and get top 1,000 - 6,000 regions

9



Our GPU Sorting of Candidate Regions

 Step 1：Make sorted blocks of 1024 elements

 The maximum number of threads in a thread block is 1024.

Multiple blocks are computed in parallel with multiple thread blocks

Copyright 2018 FUJITSU LABORATORIES LTD.

…

Merge adjacent 2 sets of sorted elements repeatedly. 

Divide each block into 8 element groups, and sort each group.

(Sorting 8 elements takes as less computation as dividing to smaller.)

…

8 elements

E
x
e
c
u
ti
o
n
 o

rd
e
r

1024 elements

Sort in descending order

1024 elements

…

Sort
…

Sort in parallel

10



Our GPU Sorting of Candidate Regions

 Step 1：Make sorted blocks of 1024 elements

 Step 2：Gather top sorted elements

Copyright 2018 FUJITSU LABORATORIES LTD.

Reduce calculation by sorting only top elements

Sorted 1024 elements

E
x
e
c
u
ti
o
n
 o

rd
e
r

Sort in descending order

Merge adjacent 2 sets of sorted 1024 elements from rightmost to 

leftmost using Bubble sort.

Repeat the above sorting, leaving the leftmost sorted sets.

11



Copyright 2018 FUJITSU LABORATORIES LTD.

 Evaluate IoU in order to remove overlapping regions

We assign a thread for each 64 bit mask (64 bit unsigned integer type).

We categorize the threads into 3 patterns, and evaluate IoU if needed. 

Target proposal region

A thread

All bits are set to 0

without evaluation

(A)

(B)

(B)

(C)

Pattern (A) Pattern (B) Pattern (C)

Sorted 

Sorted

Our GPU Non-Maximum-Suppression

All areas are evaluated

IoU: Intersection-over-Union

> threshold

then 1, else 0 

Skip unnecessary calculations

Regions with lower 

scores are evaluated

64 bits

64 bits 64 bits 64 bits

12



Experiment

We measure whole cycle time between py-faster-rcnn, 
PVANet, and our GPU-accelerated Faster R-CNN 

We implement the inference phase of Faster R-CNN in CUDA

 Select 4096 images of 500 x 375 pixels from PASCAL VOC 2007

Use VGG16 as base CNN for all the implementations

Measurement method

 Since there was a difference in configurations between py-faster-rcnn
and the others in our paper, we adjusted the configuration and measured 
elapsed time of the implementations again with the same configuration

We measured elapsed time 5 times and show results of the worst values

We calculate speed-up ratio by 100 x (ET of original) / (ET of proposal)

• ET: elapsed time

Copyright 2018 FUJITSU LABORATORIES LTD.

CPU 2x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

GPU 1x Tesla P100-PCIE-16GB

OS Ubuntu 14.04.5 LTS (GNU/Linux 4.2.0-42-generic x86 64)

Libraries MKL (v20170003), CUDA 8.0, cuDNN v5.1

13



0

10

20

30

40

50

60

70

80

E
la

p
s
e

d
 t
im

e
 p

e
r 

im
a

g
e

 [
m

s
]

Results: Whole Cycle Time

Our GPU-accelerated Faster R-CNN processed in 55.2ms per 
image (25.5% speed-up with batch size 1)

 8.21% faster compared to PVANet with VGG16

 Further speed-up is obtained by increasing batch size: 54.3% speed-up 
with batch size 16

Copyright 2018 FUJITSU LABORATORIES LTD.

25.5% speed-up 54.3% speed-up

8.21%

Our GPU-accelerated Faster R-CNN

14



0

10

20

30

40

50

60

70

80

E
la

p
s
e

d
 t
im

e
 p

e
r 

im
a

g
e

 [
m

s
]

Results: Whole Cycle Time

Our GPU-accelerated Faster R-CNN processed in 55.2ms per 
image (25.5% speed-up with batch size 1)

 8.21% faster compared to PVANet with VGG16

 Further speed-up is obtained by increasing batch size: 54.3% speed-up 
with batch size 16

Copyright 2018 FUJITSU LABORATORIES LTD.

25.5% speed-up 54.3% speed-up

8.21%

Our GPU-accelerated Faster R-CNN

We show breakdown of py-faster-rcnn and Our GPU-

accelerated Faster R-CNN with batch size 1 

15



Results: Breakdown

Our GPU-accelerated Faster R-CNN outperformed py-faster-
rcnn by 4.51x in preprocess plus postprocess, and 3.52x in 
proposal layer

Copyright 2018 FUJITSU LABORATORIES LTD.

0

5

10

15

20

25

30

35

40

preprocess,
postprocess

proposal layer convolution
layer

full connection
layer

other neural
network layers

E
la

p
s
e

d
 t
im

e
 p

e
r 

im
a

g
e

 [
m

s
]

py-faster-rcnn our GPU-accelerated faster R-CNN

4.51x faster

3.52x faster

We confirm speed-up of the common basic processes

16



Conclusions

We propose speed-up methods for Faster R-CNN with GPU

We realized a speed-up of the common basic processes in object 
detection networks

Our speed-up methods are applicable to other detection networks such 
as R-FCN, YOLO, and SSD

We evaluate the speed-up of Faster R-CNN by comparing with 
py-faster-rcnn

Our GPU-accelerated Faster R-CNN processed in 55.2ms per image: 
25.5% speed-up compared to py-faster-rcnn

We expect to observe more significant speed-up when we apply our 
methods to the network with less convolution and fully-connected layers

 Future work

 Apply our GPU-based parallel processing methods to other object 
detection neural networks such as R-FCN, SSD, YOLO etc. and 
evaluate their effectiveness

Copyright 2018 FUJITSU LABORATORIES LTD.17



Copyright 2018 FUJITSU LABORATORIES LTD.


