o8
FUJITSU

shaping tomorrow with you

SPEED-UP OF OBJECT
DETECTION NEURAL
NETWORK WITH GPU

Takuya Fukagai!, Kyosuke Maeda?, Satoshi Tanabel,
Koichi Shirahata!, Yasumoto Tomital, Atsushi Ikel,
Akira Nakagawa

1 FUJITSU LABORATORIES LTD.
2 FUJITSU SOFTWARE TECHNOLOGIES LTD.

Background FUJiTSU

B Object detection is one of the most useful and baS|c
applications of deep neural networks &

¥ NN-based methods achieved the highest scores in
the competitions such as ILSVRC and COCO

™ Various detection networks have been proposed
* Faster R-CNN, R-FCN, YOLQO, SSD etc.

® High computational complexity

B Accelerators for fast neural network processing
GPU (N\(IDIA) DLU (FUJITSU)

B Highly efficient processing
» Domain-specific architecture
» Many cores, specialized cores for NN
* High memory bandwidth

Fast object detection network processing with NN accelerators

1 Copyright 2018 FUJITSU LABORATORIES LTD.

Related Work FUjITSU

B Many algorithms have been proposed to speed-up the
calculation of convolution and fully-connected layers in CNN

W Fast convolution algorithms such as Winograd [2016 Lavin et al.], FFT
[2014 Mathieu et al.], summed area table [2017 Kasagi et al.]

B NN compression algorithms such as Column weight pruning [2017 Wang
et al.]

B Lightweight object detection networks (PVANet [2016 Kim et al.])

W Speed up by redesigning CNN architecture feature extraction part

* Less channels with more layers, adoption of concatenated RelLU, Inception,
HyperNet [Kong et al. 2016], batch normalization, residual connections

- CNN feature extraction part in object detection networks
has been accelerated

Existing works focus on fast computation of CNN layers

2 Copyright 2018 FUJITSU LABORATORIES LTD.

Problem FUjITSU

M [n detection networks, not only convolution and fully-connected
layers but also the other processes require fair amount of time

¥ Our evaluation with existing Faster R-CNN implementation (py-faster-
rcnn) shows 27.6% of time is used for outside CNN feature extraction

¥ These are the common basic processes of detection networks such as
Faster R-CNN, R-FCN, YOLO, and SSD

0 CNN layers can be further

_— accelerated by improvements
of hardware and algorithms

ol

Common basic processes
take 27.6% of time

N W W
o1 O

Elapsed time per image [ms]
N
o

15 /
10
: L
0]
preprocess, proposal layer convolution layer full connection other neural
postprocess layer network layers

Speed-up of common basic processes becomes more important

3 Copyright 2018 FUJITSU LABORATORIES LTD.

Faster R-CNN Architecture FUjITSU

B The common basic processes are executed on CPU
W preprocessing, proposal layer, and postprocessing

L Input picture Executed with CPU

\’

Picture preprocessing ---- preprocessing Executed with GPU

Neural Network‘l'

: Proposal Layer
Calculation of feature maps

PR > feature maps

(CNN layer) v
feature maps Ay Building scored
— candidate regions
Estimation of proposed
regions (proposal layer) A W Sorting of the candidate
proposed l reg\'fns
regions NMS of the candidate
Estimation of locations and regions
kinds of objects |
(Fast R-CNN layer) mrasanee proposed regions
- >
\Z
Selection of estimated results | ... pOStprocessing
output |

We speed up the common basic processes with GPU

4 Copyright 2018 FUJITSU LABORATORIES LTD.

Proposal FUJITSU

B \We propose speed up methods for the common basic
processes of the detection networks with GPU

B We implement the common basic processes with GPU and assign a
thread for each element to utilize many cores of GPU

* Fuse multiple GPU functions (CUDA kernels) to improve memory locality
» Avoid CPU-GPU data transfer during the common basic processes

B We design and implement a high speed parallel sorting and a Non-
Maximum-Suppression (NMS) with GPU

* We design an efficient sort algorithm for sorting candidate regions
* Improve existing GPU-based NMS by skipping unnecessary calculation

B Result

B Our GPU-accelerated Faster R-CNN processed in 55.2ms per image
W 25.5% speed-up compared to py-faster-rcnn in whole time

5 Copyright 2018 FUJITSU LABORATORIES LTD.

Preprocessing with GPU FUJITSU

B Resize input pictures and subtract average RGB values

M A thread is assigned for each output pixel
M We process them in a single GPU function (CUDA kernel)

Example Input Image : Preprocessed Image
_ 600 x 800 pixel _
500 x 375 pixel 600 x 800 pixel

— Subtract

_Resize input §
& pictures

.2 average
I RGB values

A thread for each output pixel

600 x 800 threads

6 Copyright 2018 FUJITSU LABORATORIES LTD.

Postprocessing with GPU FUJITSU

B Build scored candidates of detected results from network
outputs, and applies NMS
B A thread is assigned for each candidate region
M We process in a single CUDA kernel for each part

Building scored Non-Maximum-
candidates Suppression (NMS)

Proposed regions

Differences to be
added to proposed
regions

Scores for regions

Process in a single Process in a single
CUDA kernel CUDA kernel

7 Copyright 2018 FUJITSU LABORATORIES LTD.

Proposal Layer with GPU

o0
FUJITSU

B Propose rectangular regions where objects are likely to exist
B A thread is assigned for each element (anchor or candidate region)

B We process each part in one or two kernels

Building scored candidate regions

R
Sim" Candidate
| -
regions

[

Fixed anchor
regions

Sorting of candidate regions
Sort scored candidate regions and get top 1,000 - 6,000 regions

NMS of candidate regions L4

Select high score regions and suppress overlapping regions

Candidate
regions

Proposed
regions

8 Copyright 2018 FUJITSU LABORATORIES LTD.

Proposal Layer with GPU FUJITSU

B Propose rectangular regions where objects are likely to exist
B A thread is assigned for each element (anchor or candidate region)
B We process each part in one or two kernels

Building scored candidate regions

We design and |mplement a high speed paraIIeI sorting
and a Non-Maximum-Suppression (NMS) with GPU

Sorting of candidate regions
Sort scored candidate regions and get top 1,000 - 6,000 regions

NMS of candidate regions
Select high score regions and suppress overlapping regions

Candidate i _ m = | Tk Proposed
regions = ; i

9 Copyright 2018 FUJITSU LABORATORIES LTD.

Our GPU Sorting of Candidate Regions FUJITSU

B Step 1 : Make sorted blocks of 1024 elements

Execution order

B The maximum number of threads in a thread block is 1024.
B Multiple blocks are computed in parallel with multiple thread blocks

Sort in parallel

‘/ \‘ Sort
8 elements

. 1024 elements 1024 elements

\ \
[) [)

Sort in descending order

»

Divide each block into 8 element groups, and sort each group.
(Sorting 8 elements takes as less computation as dividing to smaller.)

» g N g N g N g » g » g » g P > e
« L) P Q P Q P < P < P < Y < » < » ¢

Merge adjacent 2 sets of sorted elements repeatedly.

-
<

N g
Y <

N g
Y Q L)
N g
» <

A A A
VVY
¥V V¥V ¥

A
v

10 Copyright 2018 FUJITSU LABORATORIES LTD.

Our GPU Sorting of Candidate Regions FUJITSU

B Step 1 : Make sorted blocks of 1024 elements
B Step 2 : Gather top sorted elements

Sort in descending order

Sorted 1024 elements

|
[|

Merge adjacent 2 sets of sorted 1024 elements from rightmost to
leftmost using Bubble sort.

-
« »

- »
P N [»
< ~ [y »
Pl Bl o »
<

-
« »

Repeat the above sorting, leaving the leftmost sorted sets.

<

Execution order

-
«

-
«

-
«

vVVYVYYVY Y

P
<

Reduce calculation by sorting only top elements

11 Copyright 2018 FUJITSU LABORATORIES LTD.

Our GPU Non-Maximum-Suppression FUJITSU

B Evaluate lIoU in order to remove overlapping regions
B We assign a thread for each 64 bit mask (64 bit unsigned integer type).

M We categorize the threads into 3 patterns, and evaluate IoU if needed.
Sorted

y

> loU: Intersection-over-Union

[E] > threshold

then 1, else O

A thread
I Target proposal region

Sorted

Pattern (A) Pattern (B) Pattern (C)
64 bits | [6I>its B | 64bits
Il b
All bits are setto O ' '
) . Regions with lower All areas are evaluated
without evaluation scores are evaluated

Skip unnecessary calculations

12 Copyright 2018 FUJITSU LABORATORIES LTD.

Experiment FUJiTSU

B \We measure whole cycle time between py-faster-rcnn,
PVANet, and our GPU-accelerated Faster R-CNN

¥ We implement the inference phase of Faster R-CNN in CUDA
W Select 4096 images of 500 x 375 pixels from PASCAL VOC 2007
W Use VGG16 as base CNN for all the implementations

B Measurement method

W Since there was a difference in configurations between py-faster-rcnn
and the others in our paper, we adjusted the configuration and measured
elapsed time of the implementations again with the same configuration

B We measured elapsed time 5 times and show results of the worst values
W We calculate speed-up ratio by 100 x (ET of original) / (ET of proposal)

* ET: elapsed time CPU 2x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
GPU 1x Tesla P100-PCIE-16GB
(O Ubuntu 14.04.5 LTS (GNU/Linux 4.2.0-42-generic x86 64)
Libraries MKL (v20170003), CUDA 8.0, cuDNN v5.1

13 Copyright 2018 FUJITSU LABORATORIES LTD.

Results: Whole Cycle Time FUJITSU

B Our GPU-accelerated Faster R-CNN processed in 55.2ms per
Image (25.5% speed-up with batch size 1)
W 8.21% faster compared to PVANet with VGG16

W Further speed-up is obtained by increasing batch size: 54.3% speed-up
with batch size 16

(00]
o

gm 25.5% speed-up 54.3% speed-up
.)
60 8. 21/o
£ 50
8 40
o
£ 30
320
(%2}
£10
Yo
& > 3 S
£ & & & N
& Q* 0’2’ <« *° *° &
&
Q

Our GPU-accelerated Faster R-CNN

14 Copyright 2018 FUJITSU LABORATORIES LTD.

Results: Whole Cycle Time

o)
FUJITSU

B Our GPU-accelerated Faster R-CNN processed in 55.2ms per
Image (25.5% speed-up with batch size 1)
B] 2104 facter comnared tn P\/ANlet with \/(R(G1A
= We show breakdown of py-faster-rcnn and Our GPU- up
accelerated Faster R-CNN with batch size 1

©
(\\

_80 () .
20 25.5% speed-up 54.3% speed-up
%60 8___21% R
£ 50
3 40
)
£30
3 20
(%2]
g10
Yoo
,\0 @g\ \ﬁ_J \C\)Qq, \C‘JQD‘ \C)éb S
& N ° N4 *° g &
&
Q

Our GPU-accelerated Faster R-CNN

15

Copyright 2018 FUJITSU LABORATORIES LTD.

Results: Breakdown FUjITSU

B Our GPU-accelerated Faster R-CNN outperformed py-faster-
rcnn by 4.51x in preprocess plus postprocess, and 3.52x in
proposal layer

40
4.51x faster
\ 3.52x faster I

preprocess, proposal layer convolution full connection other neural
postprocess layer layer network layers

R P N W W
o O o O O

Elapsed time per image [ms]
N
o

o O

m py-faster-rcnn m our GPU-accelerated faster R-CNN

We confirm speed-up of the common basic processes

16 Copyright 2018 FUJITSU LABORATORIES LTD.

Conclusions FUjiTSU

B We propose speed-up methods for Faster R-CNN with GPU

We realized a speed-up of the common basic processes in object
detection networks

Our speed-up methods are applicable to other detection networks such
as R-FCN, YOLO, and SSD

B We evaluate the speed-up of Faster R-CNN by comparing with
py-faster-rcnn

Our GPU-accelerated Faster R-CNN processed in 55.2ms per image:
25.5% speed-up compared to py-faster-rcnn

We expect to observe more significant speed-up when we apply our
methods to the network with less convolution and fully-connected layers

B Future work

Apply our GPU-based parallel processing methods to other object
detection neural networks such as R-FCN, SSD, YOLO etc. and
evaluate their effectiveness

17 Copyright 2018 FUJITSU LABORATORIES LTD.

e,
FUJITSU

shaping tomorrow with you

