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Noisy Labels Problem:
I Labeling image dataset is a cubersome work and easily

induce noise. It has a large impact on learning.

Figure 1: left-middle1-right might be labeled as dog, seal, and seal.

1Copyright: http://www.dianliwenmi.com/postimg_3364775_6.html
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Noise patterns:
I Image x has a noisy label z, its true label y is unknown.
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Figure 2: Two different noise patterns.

I Left: noisy label z only depends on true label y.
I Right: z depends on both of true label y and feature x.
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Noise Modeling:
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Figure 3: A typical label noise modeling procedure.

Learning with EM:
I E-step: fix W and update the noise modeling parameter θ.
I M-step: use z, y=h(x, w), and θ to train W.
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Cyclic Annealing Training (CAT):
I It abruptly raises the learning rate α and then quickly

decreases it with a cosine function:

α(t) =
α0

2
(cos(

πmod(t − 1, dT/Ce)
dT/Ce

) + 1)

I Align every annealing learning rate cycle to every M-step.
I Then use the obtained local minimal CNN models to

update the following E-step.
I Almost C-times faster than original EM approaches.

JiaWei Li, THU CAT Training CNNs for Image Classification with Noisy Labels 6 / 15



C
.

CAT vs. standard training schedule:
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Figure 4: Training DenseNet-40 on CIFAR-10 with different schedule.
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Aggregate M-cycle CNNs at test time:

Figure 5: Using CAT for Snapshot Ensemble1.

I Once the training finished, collect all local minimal CNNs.
I The aggregating output will be: ĥAVG(x) = 1

C
∑C

c=1ĥc(x).
1ICLR 2017. Gao Huang, et al. Snapshot ensembles: Train 1, get m for free.
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The log likelihood of model parameters are:

L(W , θ) =
n∑

t=1

log(
k∑

i=1

p(zt |yt = i ; θ)p(yt = i|xt ; W )).

Algorithm 1: CAT on Noisy Labels.
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Noise Setting on MNIST:
I We use the label flipping operation on MNIST dataset.

Figure 6: Label flipping with noise pattern [7,9,0,4,2,1,3,5,6,8].
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Performance on MNIST:

0 2 4 6 8 10
Noisy Labels

0

2

4

6

8

10

Tr
ue

 la
be

ls

0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

0 2 4 6 8 10
Noisy Labels

CAT Simple NAL

Figure 7: The acquired transfer probability θ̂ of CAT and Simple NAL.

I 46% noisy labels with noise pattern [7,9,0,4,2,1,3,5,6,8].
I The simple NAL has a 99.68% classification accuracy and

CAT achieves 99.77%.
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Noise Setting on CIFAR-100:
I z depends on both of true label y and feature x.

Figure 8: Randomly selected images from the noisy-label CIFAR.
JiaWei Li, THU CAT Training CNNs for Image Classification with Noisy Labels 12 / 15



C
.

Robustness on CIFAR-100:
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Figure 9: Compare the robustness of noise modeling methods.
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Thanks for listening!
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