

Cyclic Annealing Training (CAT) CNNs for Image Classification with Noisy Labels

JiaWei Li, Tao Dai, QingTao Tang, YeLi Xing, Shu-Tao Xia Tsinghua University

li-jw15@mails.tsinghua.edu.cn

October 8, 2018

JiaWei Li, THU

CAT Training CNNs for Image Classification with Noisy Labels

1/15

A D N A B N A B

Noisy Labels Noisy Labels Problem Noise Modeling with EM

Speedup the training in M-cycle Cyclic Annealing Training

Aggregate M-cycle CNNs at test time Bagging CNNs

Algorithm Description

CAT on Noisy Labels

Experiments

Performance on MNIST Robustness on CIFAR

• • • • • • • • • • •

Noisy Labels Problem:

Labeling image dataset is a cubersome work and easily induce noise. It has a large impact on learning.

Figure 1: left-middle¹-right might be labeled as dog, seal, and seal.

Noise patterns:

Image x has a noisy label z, its true label y is unknown.

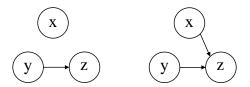


Figure 2: Two different noise patterns.

Left: noisy label **z** only depends on true label **y**.

Right: z depends on both of true label y and feature x.

A D N A A N N A

Noise Modeling:

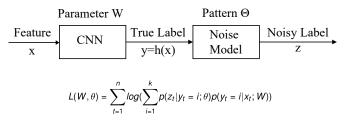


Figure 3: A typical label noise modeling procedure.

Learning with EM:

- E-step: fix **W** and update the noise modeling parameter θ .
- M-step: use z, y=h(x, w), and θ to train W.

JiaWei Li, THU CAT Training CNNs for Image Classification with Noisy Labels 5 / 15

Cyclic Annealing Training (CAT):

It abruptly raises the learning rate α and then quickly decreases it with a cosine function:

$$\alpha(t) = \frac{\alpha_0}{2} (\cos(\frac{\pi mod(t-1, \lceil T/C \rceil)}{\lceil T/C \rceil}) + 1)$$

- Align every annealing learning rate cycle to every M-step.
- Then use the obtained local minimal CNN models to update the following E-step.
- Almost *C-times faster* than original EM approaches.

CAT vs. standard training schedule:

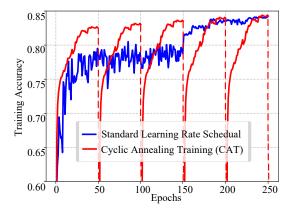


Figure 4: Training DenseNet-40 on CIFAR-10 with different schedule.

JiaWei Li, THU CAT Training CNNs for Image Classification with Noisy Labels 7 / 15

Aggregate M-cycle CNNs at test time:

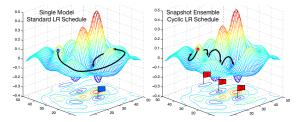


Figure 5: Using CAT for Snapshot Ensemble¹.

- Once the training finished, collect all local minimal CNNs.
- The aggregating output will be: $\hat{h}^{AVG}(x) = \frac{1}{C} \sum_{c=1}^{C} \hat{h}_c(x)$.

 ¹ICLR 2017. Gao Huang, et al. Snapshot ensembles: Train 1, get m for free:

 Cat Training CNNs for Image Classification with Noisy Labels
 A / 15

The log likelihood of model parameters are:

$$L(W, \theta) = \sum_{t=1}^{n} log(\sum_{i=1}^{k} p(z_t | y_t = i; \theta) p(y_t = i | x_t; W)).$$

- 1: Given n samples training data $X(x_1, ..., x_n)$ with noisy label $Z(z_1, ..., z_n)$, the true label $Y(y_1, ..., y_n)$ are unknown. The transfer probability between true label and noisy label is denoted as $\Theta(\theta_{ij} = p(z = j|y = i))$.
- We first generate a random matrix Θ
 ⁰₀ to be the initialization of the noise pattern.
- 3: Then we repeatedly do C times the following:
 - For every training cycle c ranges from 1 to C, initiate the learning rate with a constant value α₀.
 - (2) With the learning rate annealing from α₀ to 0 as function α(t) = <u>an</u>(cos(<u>π-mod(t-1,T)</u>) + 1), where t is current iteration number, train the CNN p(y|x; W^c) with a fixed follow-up noise layer (linear or softmax) p(z|y; θ_{c-1}) for total T iterations.

- (3) Update the learned noise pattern $\hat{\Theta}_c$ with the closed-form function (3).
- 4: Once all of the training finished, drop the noise layer according to the final ∂_C. The remaining CNN parameters W^c will be used to predict the true labels, as f̂_c = p(y|x; W^c), c = 1, ..., C.
- 5: For any prediction sample $\langle x_0, z_0 \rangle$ with a hidden true label y_0 , the aggregating output \hat{f} of bagging CNNs is the simple averaging $\hat{f}^{AVG}(x_0) = \frac{1}{C} \sum_{c=1}^{C} \hat{f}_c(x_0)$.
- The prediction error is given by counting the proportion of prediction mistakes f(x₀)≠y₀ among the test dataset.

Algorithm 1: CAT on Noisy Labels.

JiaWei Li, THU

CAT Training CNNs for Image Classification with Noisy Labels

9/15

Noise Setting on MNIST:

We use the label flipping operation on MNIST dataset.

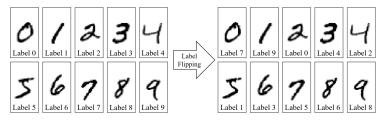


Figure 6: Label flipping with noise pattern [7,9,0,4,2,1,3,5,6,8].

JiaWei Li, THU CAT Training CNNs for Image Classification with Noisy Labels 10 / 15

A D N A B N A B N

Performance on MNIST:

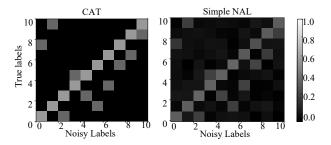


Figure 7: The acquired transfer probability $\hat{\theta}$ of CAT and Simple NAL.

- ▶ 46% noisy labels with noise pattern [7,9,0,4,2,1,3,5,6,8].
- The simple NAL has a 99.68% classification accuracy and CAT achieves 99.77%.

JiaWei Li, THU CAT Training CNNs for Image Classification with Noisy Labels 11 / 15

Noise Setting on CIFAR-100:

z depends on both of true label y and feature x.

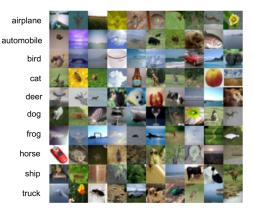


Figure 8: Randomly selected images from the noisy-label CIFAR.

JiaWei Li, THU

CAT Training CNNs for Image Classification with Noisy Labels

12/15

Robustness on CIFAR-100:

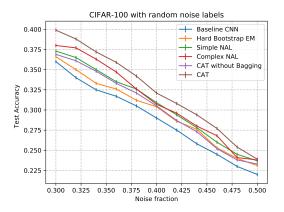


Figure 9: Compare the robustness of noise modeling methods.

JiaWei Li, THU

CAT Training CNNs for Image Classification with Noisy Labels

13/15

Selected Reference:

- 1 TNNLS 2014. Classification in the Presence of Label Noise: a Survey.
- 2 ICLR 2015. Training convolutional networks with noisy labels.
- 3 ICLR 2015. Training deep neural networks on noisy labels with bootstrapping.
- 4 ICASSP 2016. Training deep neural-networks based on unreliable labels.
- 5 ICLR 2017. Snapshot ensembles: Train 1, get m for free.
- 6 ICLR 2017. Training DNNs Using a Noise Adaptation Layer.

Some New Progress:

- 1 JMLR 2018. A theory of learning with corrupted labels.
- 2 ICML 2018. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels.
- 3 ICML 2018. Dimensionality-Driven Learning with Noisy Labels.
- 4 CVPR 2018. Iterative Learning with Open-set Noisy Labels.
- 5 ICLR 2019 submission. Pumpout: A Meta Approach for Robustly Training Deep Neural Networks with Noisy Labels.

A D N A B N A B N

Thanks for listening!

JiaWei Li, THU CAT Training CNNs for Image Classification with Noisy Labels 15 / 15