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Noisy Labels Problem:

> Labeling image dataset is a cubersome work and easily
induce noise. It has a large impact on learning.
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Figure 1: left-middle’-right might be labeled as dog, seal, and seal.

"Copyright: http: //www.dianliwenmi.com/postimg, 3364775-6.html
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Noise patterns:
» Image x has a noisy label z, its true label y is unknown.
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Figure 2: Two different noise patterns.

» Left: noisy label z only depends on true label y.
» Right: z depends on both of true label y and feature x.
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Noise Modeling:
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Figure 3: A typical label noise modeling procedure.

Learning with EM:
» E-step: fix W and update the noise modeling parameter 6.
» M-step: use z, y=h(x, w), and @ to train W.
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Cyclic Annealing Training (CAT):

» It abruptly raises the learning rate « and then quickly
decreases it with a cosine function:

mmod(t —1,[T/C])
[T/C]

a(t) = %(cos( )+ 1)

> Align every annealing learning rate cycle to every M-step.

» Then use the obtained local minimal CNN models to
update the following E-step.

» Almost C-times faster than original EM approaches.
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Figure 4: Training DenseNet-40 on CIFAR-10 with different schedule.
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Figure 5: Using CAT for Snapshot Ensemble’.

» Once the training finished, collect all local minimal CNNs.
> The aggregating output will be: VC(x) = L3529 hc(x).

"ICLR 2017. Gao Huang, et al. Snapshot ensembles: Train 1, get m for free:
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The Iog likelihood of model parameters are:

n k
LW,0) = > log(y_plzly:
t=1

i=1

= 10)p(yr = i|xt; W)

1: Given n samples training data X (21, ..., z,,) with noisy
label Z(z1,...,2,), the true label Y (y1,...,y,) are un-
known. The transfer probability between true label and
noisy label is denoted as O(6;; = p(z = jly = i)).

2: We first generate a random matrix Oy to be the initializa-
tion of the noise pattern.

3: Then we repeatedly do C' times the following:

(1) For every training cycle ¢ ranges from 1 to C, ini-
tiate the learning rate with a constant value c.

(2) With the learning rate annealing from ag to 0
as function a(t) = %(eos(w) +1),
where ¢ is current iteration number, train the CNN
p(y|z; W€) with a fixed follow-up noise layer (lin-
ear or softmax) p(z|y; 6, _1) for total T iterations.

»

a

(3) Update the learned noise pattern O, with the
closed-form function (3).

Once all of the training finished, drop the noise layer
according to the final O¢. The remaining CNN pa-
rameters 1W¢ will be used to predict the true labels, as
Je = plyla; We),c =
For any prediction sample (zo, zo) with a hidden true la-
bel yq, the aggregaung oulpul f of baggmg CNN is the
simple averaging f VG (xg) ch_lfu Z0).

The prediction error is given by counting the proportion
of prediction mistakes f(z)7#yo among the test dataset.

Algorithm 1: CAT on Noisy Labels.
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Noise Setting on MNIST:
» We use the label flipping operation on MNIST dataset.
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Figure 6: Label flipping with noise pattern [7,9,0,4,2,1,3,5,6,8].
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Figure 7: The acquired transfer probability # of CAT and Simple NAL.

» 46% noisy labels with noise pattern [7,9,0,4,2,1,3,5,6,8].
» The simple NAL has a 99.68% classification accuracy and
CAT achieves 99.77%.
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Noise Setting on CIFAR-100:
» z depends on both of true label y and feature x.
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Figure 8: Randomly selected images from the noisy-label CIFAR.
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Figure 9: Compare the robustness of noise modeling methods.
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Thanks for listening!
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