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Summary

• Background
▫ Pansharpening

▫ Compressed Acquisitions

• Contribution
▫ Joint model of compression and fusion

▫ Employed Regularizers

• Experimental results

• Conclusion
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Definition: Sharpening (i/e: enhanching) a multispectral image 
with a panchromatic one [Vivone et al., 2015, Loncan et al., 
2016]

SPATIAL RESOLUTION: 
Minimum spatial
distance required to 
distinguish two objects 
on the scene 

SPECTRAL DIVERSITY: 
Minimum distance
between two separable
spectra

Panchromatic (PAN)

Multispectral (MS)

Pansharpening
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Pansharpening



Compressed Acquisitions: Color Filter Arrays
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CFA (Bayer Pattern)



Compressed Acquisitions: CASSI
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CASSI [Arce et al., 2014]

𝑛𝑚1

𝑛𝑚2

𝑛𝑚1

𝑛𝑏

𝑛𝑐1

𝑛𝑐1 = 𝑛𝑚1 + 𝑛𝑏 − 1

𝑛𝑚2



PAN and MS
Acquisition

Software 
compression

Data 
Transfer

Decompression
of the sources

Image 
Fusion

Compressed
Acquisition

Joint Reconstruction and Fusion
Data 

Transfer

SATELLITE EQUIPMENT GROUND SEGMENTDOWNLINK

- Classical Approach

- Proposed Model
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A joint model
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Compressed Acquisition: Model

• Given:

▫ A PAN signal 𝒑 ∈ ℝ𝑛𝑝

▫ A MS signal 𝒎 ∈ ℝ𝑛𝑚𝑛𝑏

• Target: Generate an easy model for the optical
compressed acquisition 𝒚 ∈ ℝ𝑛𝑐 of multimodal sources

▫ Resolution ratio: ρ = 𝑛𝑐/ (𝑛𝑚𝑛𝑏+𝑛𝑝)

• Desired properties:

Property Description Mathematical model

Linearity Optical devices are linear systems 𝒚 = 𝑪[𝒑;𝒎]

Separability Each source is compressed indipendently 𝑪 is a block matrix

Boolean Matrix Each output sample is a sum of input samples 𝑪 is a binary matrix

Sub-sampling Each output sample is equal to a single input pixel Each column of 𝑪 has a single 1

Column Concatenation

𝑛𝑚=#pixels MS
𝑛𝑏=#bands MS
𝑛𝑝=#pixels PAN

𝑛𝑐=#output samples



Compressed acquisitions: Binary masks
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Uniform Kodak v.3 Teledyne OnyxMaximum Distance
[Condat, 2009]

RGB/NIR CAMERAS CAMERAS WITH DOMINANT WIDE BAND



Compression: Test environment

• In our experimental framework, we choose y such 
that 𝑛𝑐=𝑛𝑝

• For CFA-style compression we describe each mask 
𝑯0 (for the PAN) and 𝑯1,, … , 𝑯𝑛𝑏 (for each band of 
the MS) as binary subsampling matrices

• Final compressed product is hence:

𝒀 = 𝑷⨂𝑯0 + 𝑼 

𝑘=1

𝑛𝑏

𝑴𝑘⨂𝑯𝑘

Where
• ⨂ stands for element-wise product
• 𝑴𝑘 is the k-th band of the MS source
• 𝑼 is a zero-padding (upsampling) oparator

• For CASSI-style compression, the equation can be 
easily modified by introducing a shift within 
parenthesis and taking random masks.
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PAN

MS

M
as

k

Compressed product
𝑴 𝑷

𝒀



Reconstruction scheme: Direct Model

• We propose to solve this problem with a variational approach:
▫ We suppose 𝒙 ∈ ℝ𝑛𝑝𝑛𝑏 is the unknown ideal vector image to reconstruct (written in 

lexicographic order) and we want to find an estimation ෝ𝒙 ∈ ℝ𝑛𝑝𝑛𝑏 of such signal

• The PAN and MS sources are supposed to be generated according to this model:

ቊ
𝒑 = 𝑹𝒙 + 𝒆𝑃
𝒎 = 𝑺𝑩𝒙 + 𝒆𝑀

• Where:
▫ 𝑹 ∈ ℝ𝑛𝑝×𝑛𝑝𝑛𝑏 is a matrix related to the how the spectral response of the MS covers the 

one of the PAN
▫ 𝑩 ∈ ℝ𝑛𝑝𝑛𝑏×𝑛𝑝𝑛𝑏 is a blurring matrix
▫ 𝑺 ∈ ℝ𝑛𝑚𝑛𝑏×𝑛𝑝𝑛𝑏 is a subsampling matrix
▫ 𝒆𝑃 and 𝒆𝑀 are instances of i.i.d. AWGN with zero mean and an unknown variance
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Reconstruction scheme: Inverse Model
• The inversion is achieved by minimizing a cost function, for which we consider two approaches:
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Regularization Cost function Solver

Vector Total
Variation (VTV)

ෝ𝒙 = argmin𝒙 𝑨𝒙 − 𝒚 𝐹
2 + 𝜆𝜑𝑇𝑉 𝒙

𝜑𝑇𝑉 𝒙 =
𝑖,𝑗


𝑘=1

𝑛𝑏
∆𝑖𝑿𝑖,𝑗,𝑘

2
+ ∆𝑗𝑿𝑖,𝑗,𝑘

2

Primal-dual PDFP2O 
[Chen et al., 2013]

LASSO ෝ𝒙 = 𝜳−1 argmin𝒅 𝑨𝜳−1𝒅 − 𝒚 2
2 + 𝜆 𝒅 1

𝒅 = 𝜳𝒙 is a trasformation in a sparse domain

SPARSA [Wright et al., 
2009]

• Where:
▫ 𝑨 is the linear direct model which includes compression and degradation
▫ 𝑨𝒙 − 𝒚 2

2 is the maximum likelihood estimator
▫ The remaining term is a regularization function
▫ 𝜆 weights the two contributes
▫ ∆𝑖 and ∆𝑗 indicate discrete gradient in the horizontal and vertical direction



Reconstruction scheme: Iterations
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• Iteration: 0

• Iteration: 1

• Iteration: 2

• Iteration: 5

• Iteration: 10

• Iteration: 50

• Iteration: 100

• Iteration: 150

• Iteration: 250

• Dataset specifics:
▫ Region: Hobart, Canada
▫ Acquisition platform: 

IKONOS
▫ PAN GSD: 2m
▫ PAN sizes: 512x512 px
▫ Spatial ratio: 2
▫ MS bands: 4



Reconstruction scheme: Effect of λ parameter
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𝜆 = 0.0040𝜆 = 0.0015 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙)𝜆 = 0.0001



Reduced Resolution validation
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Reference 
fusion

Compressed 
fusion

• Objective quality assessment was performed according to 
the Wald’s protocol [Wald et al., 1997]

Dataset Hobart Beijing

Region Canada China

Aquisition
Platform

IKONOS Worldview-3

PAN GSD 
(red. res.)

2m 1,6m

PAN sizes
(px)

512x512 512x512

Spatial ratio 2 2

MS bands 4 4



Visual analysis: Beijing dataset

Interpolated MSGT (Ground Truth) PAN

Image Fusion and Reconstruction of Compressed Data: A Joint Approach

16



Visual analysis: Beijing dataset

CASSI+VTVGT (Ground Truth) CFA+VTV
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Visual analysis: Hobart dataset

Interpolated MSGT (Ground Truth) PAN
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Visual analysis: Hobart dataset

CASSI+LASSOGT (Ground Truth) CFA+VTV
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Conclusions and future perspectives

• We presented a flexible model for joint approach of fusion and 
reconstruction of compressed images

• Compression can be tailored for optical hardware implementation
• Preliminary tests show potential for the reconstruction with total

variation based regularization
• Future perspectives:
▫ Comparison with software compression (e.g. JPEG2000)
▫ Investigate mathematical conditions which link compression with loss of 

quality on the fused image
▫ Expansion of the framework to hyperspectral images
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