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1. Introduction
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Why is this important?

To build systems able to solve increasingly complex tasks 
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2. State of the art
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Common issues

- Dataset size: fine-grained datasets are usually small

- Inter-class variations: on top of being subtle they can be very localized

Due to these major issues networks suffer of severe overfitting
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Common solutions (1)

- Fully supervised methods rely on annotations like object or parts location

State-of-the-art methods usually combine localization with classification:

Annotations can be very expensive to obtain
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- Weakly supervised methods instead learn where discriminative parts are
   without annotations

Common solutions (2)

  Usually adopting multiple losses, many extra 
hyper-parameters requiring a complex training procedure 
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3. Proposed solution
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Opening the black box of CNNs
A CNN can be seen as a function g(•) which is the composition of:

- Feature extractor f(•) detects features and creates a representation Z

- Classifier ф(•) which combines features in Z to predict output y
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Looking closer
- Feature maps encode the presence of features in specific regions 
- Classifier combines and weights (pooled) features to compute the outputs 
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Zhang et al.[1] proposed to weight features preserving the spatial information

 Feature map Z Class heatmaps 
H(c)

Classifier Weights
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This results in class heatmaps where “high” pixels contain class features
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Focus operation

Class heatmap
H(c)

Class Binary mask
M(c)

Focused region

Zoom

Binary 
Threshold

Applies a binary threshold to class heatmaps to select a relevant region

The region above threshold is extracted and zoomed to find finer details
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  15The networks achieve increasingly higher level of specialization 

Combine CNNs in an ensemble
This focus operation is performed between consecutive CNNs

Coarse input

Focus Focus

“Finer” input “Finest” input

 First CNN  Second CNN  Last CNN
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ResultsResults

CUB-Birds [2]
200 species of birds
~6k training images

FGVC-Aircraft [3]
100 types of airplanes

~6k training images

Stanford Cars [4]
196 car models

~10k training images

Let’s now compare the ensemble with current state-of-the art methods:
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Ablation studies

Let’s compare the accuracy of the single networks with the ensemble:

Where         is the performance of the single network at the nth stage of the
ensemble and         is the accuracy of the ensemble with N networks

The accuracy of the ensemble always exceeds the one of the single network
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4. Conclusions and future work
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Conclusions and future work

The proposed method:

- Is simple

- Achieves state-of-the-art results on three popular fine-grained datasets 

- Does not require extra hyper-parameter tuning, training or annotations

Future work will be geared towards the definition of a recurrent model as 
well as to the application of this study in real-world problems
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- Architecture: Resnet-50[5] pre-trained on Imagenet[6]

- Optimization: SGD with momentum 0.9 for 270 epochs

- Losses: Cross Entropy loss

- Learning rate: initially 1e-3 later decreased by 1/10 every 100 epochs

- Regularization: dropout rate 0.7, L2 with decay 5e-4

- Input sizes: coarse input at 448x448px, others at 224x224px 

- Augmentations: random {flips, resizing, crops, distortion (bright., contr., satur.)} 

- Framework: implemented in Pytorch

Implementation
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Thank you!
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