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Problem Statement

Recommendation based on contextual similarity
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Contributions

1. Our method recommends similar images based on different
parts of a query image.

2. To identify different parts we use attention and weakly labeled
data.

3. Instead of features from standard pre-trained neural networks,
we suggest using texture-based features.

4. We evaluate our method on item recognition task,
consumer-to-shop retrieval and in-shop retrieval tasks.



Related Work

I Cloth parsing,

I Clothing attribute recognition,

I Detecting fashion style, and

I Cross-domain image retrieval using Siamese network and
Triplet network.



Proposed Architecture
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CNN for Global Image Features
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Visual Attention Module
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Texture Encoding Layer
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Multi-label classification loss

Lcls =
1

N

N∑
i=1

C∑
c=1

(pci − p̂ci )2 (1)

where, N is training sample, C is total number of classes, p̂i is
ground truth label vector of sample i and pi is predicted label
vector of sample i .



Diversity loss

Diversity loss is the correlation between adjacent attention maps,

Ldiv =
1

K − 1

K∑
k=2

HxW∑
i=1

lk−1,i .lk,i (2)

where, K is the total steps of recurrent attention, HxW is the
height and width of attention maps, lk is the kth attention map.



Localisation loss

Localization loss, Lloc from [1] is used to remove redundant
locations and force localization network to look at small clothing
parts.



Combined Loss

L = Lcls + λ1Ldiv + λ2Lloc (3)

where λ1 and λ2 are multiplicative factors. We use 0.01 for all our
experiments.



Datasets

I Fashion144K [2]
I 90,000 images with multilabel annotation.
I 128 classes.
I Image resolution is 384x256.

I Fashion550K [3]
I 66 classes.

I DeepFashion [4]
I 800,000 images
I Similarity pairs is available for consumer-to-shop and in-shop

retrieval tasks



Experiments

I Model is trained on Fashion144K [2] dataset with 59 item
labels, color labels were excluded.

I Evaluated item recognition task on Fashion144K [2] and
Fashion550K [3] dataset.

I Consumer-to-shop and in-shop retrieval tasks are evaluated on
DeepFashion [4] dataset.



Results

Dataset Fashion144k [2] Fashion550k [3]
Model APall mAP APall mAP

StyleNet [2] 65.6 48.34 69.53 53.24
Baseline [3] 62.23 49.66 69.18 58.68
Viet et al. [5] NA NA 78.92 63.08
Inoue et al. [3] NA NA 79.87 64.62
Ours 82.78 68.38 82.81 57.93

Multi-label classification on Fashion144k [2] and Fashion550k [3]
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(a) In-Shop retrieval
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(b) Consumer-to-shop retrieval

Retrieval results for In-shop and Consumer-to-shop retrieval tasks
on DeepFashion dataset [4].



Results
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Semantically similar results for some of the query images from
Fashion144k dataset [2] using our method.



Conclusion

I Using clothing parts for recommendation gives much
variability in the recommendation results.

I Attention can be used to learn discriminative features from
weak labels.

I Texture cues are important for learning different parts.
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