TP.P4.5

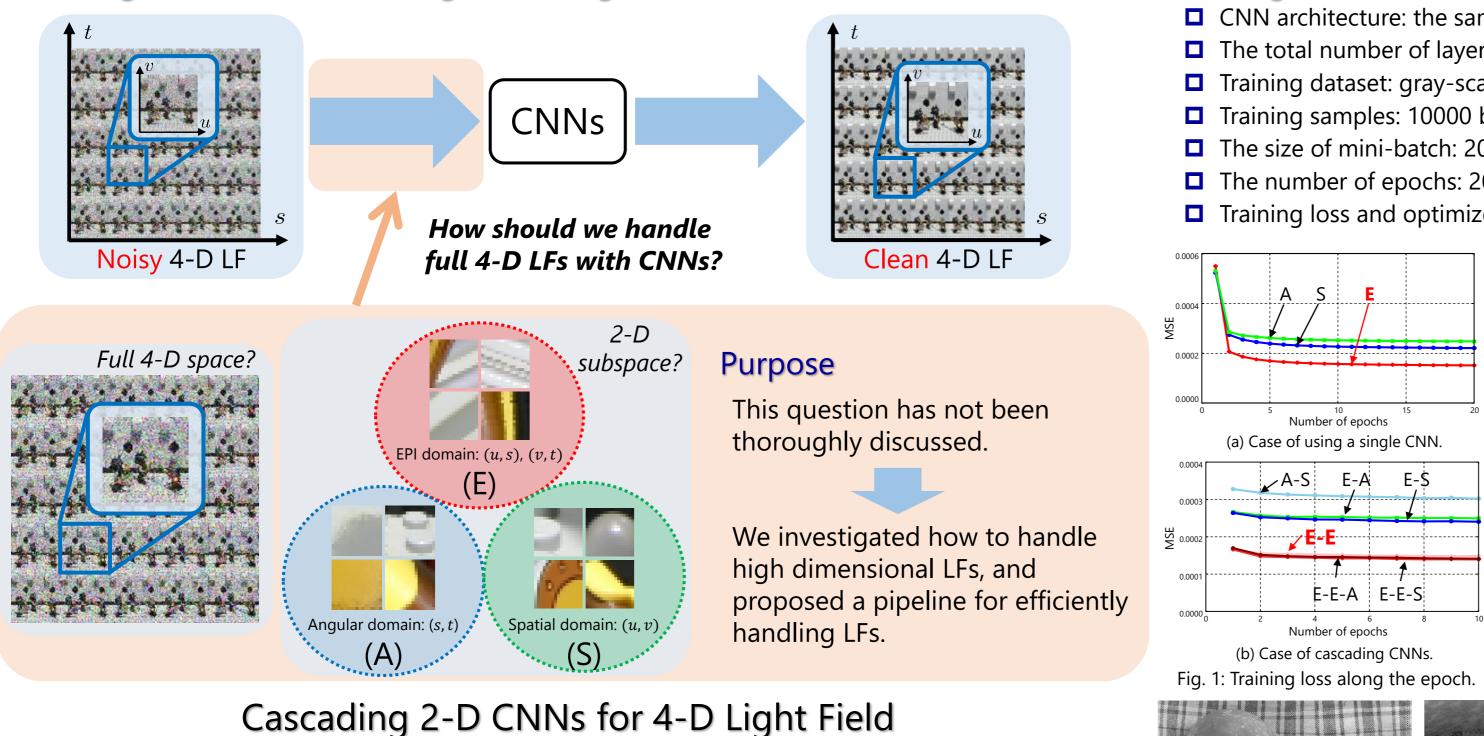
How Should We Handle 4D Light Fields with CNNs?

Shu Fujita, Keita Takahashi, Toshiaki Fujii

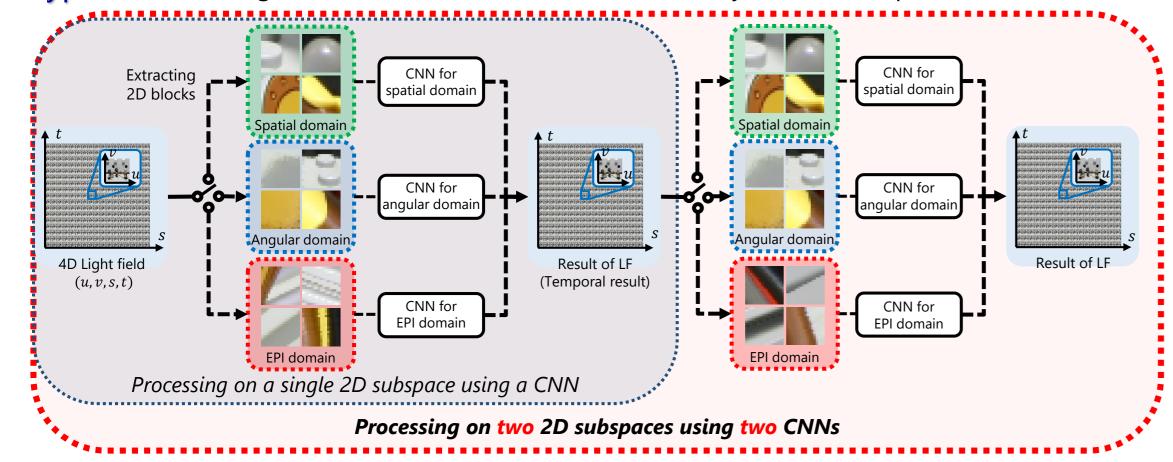
Graduate School of Engineering, Nagoya University, Japan

Introduction

Denoising with CNNs for 4-D Light Field Signals



Keypoint: Cascading several CNNs, each of which works only on 2-D subspace of the full 4-D LFs

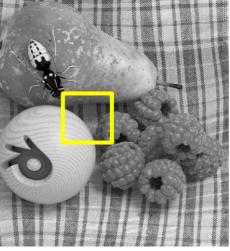


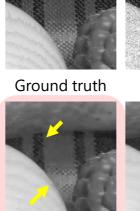
Experiments

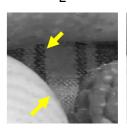
Training Details

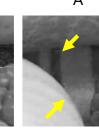
- CNN architecture: the same as VDSR [1], but the number of layers is different.
- □ The total number of layers for the entire process pipeline: 30
- Training dataset: gray-scale versions of the Stanford Light Field Archive
- **Training samples:** 10000 blocks (the block size is $17 \times 17 \times 17 \times 17$)
- □ The size of mini-batch: 200 (for a single CNN) and 10 (for cascaded CNNs)
- □ The number of epochs: 20 (for a single CNN) and 10 (for cascaded CNNs)
- **Training loss and optimizer: MSE loss and Adam optimizer**

Tab. 1: PSNR [dB] of the entire LFs after denoising. (Gaussian noise is added)										
	Tarot		Buddha		Mona		Papillon		StillLife	
Noise std. dev.	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15
Noisy input	20.01	16.48	20.00	16.48	20.00	16.48	20.00	16.48	20.00	16.48
E	31.92	28.8	33.29	30.69	33.50	30.96	34.51	31.72	28.08	25.50
A	28.21	25.71	32.44	30.11	33.26	30.78	34.07	31.50	25.97	23.39
S	28.21	25.77	31.47	29.52	31.96	29.99	33.16	31.07	25.96	24.01
E-E	35.47	32.93	37.60	35.31	37.99	36.13	38.89	37.09	31.41	28.58
E-A	32.99	30.53	35.65	33.47	36.25	34.06	37.32	35.40	28.82	26.12
E-S	33.11	30.75	35.41	33.37	35.25	33.56	36.99	35.25	29.03	26.47
A-S	30.64	28.22	36.13	34.40	36.73	35.23	37.91	36.51	26.73	24.674
E-E-A	35.48	33.24	37.69	35.60	38.07	36.43	39.13	37.39	31.60	28.88
E-E-S	35.63	33.34	37.94	35.80	37.97	36.37	39.13	37.60	31.56	29.27
NLMF [2]	26.06	23.27	27.96	24.86	28.07	24.90	28.36	25.06	24.83	22.52
BM3D [3]	28.53	26.13	32.33	30.33	32.80	31.05	34.49	32.51	27.18	24.93
VBM4D [4]	30.34	27.94	33.91	31.90	34.29	32.54	36.11	34.31	28.81	26.41

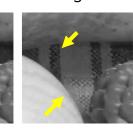


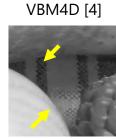






A-S





Ground truth image

E-E

E-S

E-E-A

E-E-S

Fig. 2: Denoised images at center viewpoint. (We added Gaussian noise with standard deviation 0.10.)

Summary

The EPI domains are easier to learn than the other domains. The combination of two EPI domains is better than the others.

Reference

[1] J. Kim et al., "Accurate image super-resolution using very deep convolutional networks," in IEEE CVPR, 2016.

[2] A. Buades et al., "A non-local algorithm for image denoising," in IEEE CVPR, 2005.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering," IEEE TIP, 2007. [4] M. Maggioni et al., "Video denoising, deblocking and enhancement through separable 4-D nonlocal spatiotemporal transforms," IEEE TIP, 2012.