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Multi-Sensor Fusion Pipeline

Experimental Results

» We introduce a dataset with 209 pole-mounted traffic lights in central Dublin.
» We employ:

¢ Automatic complex scenes analysis: multiple objects.

» We perform optimization for object discovery and geolocation based on the following input estimates:
v Individual discovered objects (semantic segmentation)
v Monocular depth estimated for each discovered object A;
v' LIDAR candidate matches

¢ — Dublin TL dataset

v — fusion-based detection

B - street level detection
— LIDAR matches

¢+ Recycling abundant existing image datasets.

v' Google Street View imagery: 1307 panoramas
v Alrborne L|DAR scan reportmg 12300 pole like matches

s Efficient detail-preserving fusion of multi-sensor data.

3d point cloud data
optical imagery
(airborne / satellite)

> We define a Markov Random Field (MRF) model over the space X of all view-rays intersections:
* label z=0 if not occupied by object
* label z=1 if occupied

Lidar laser scans
optical imagery
(street-level)

» MRF configuration iIs characterized by its corresponding energy U. Optimal = minimum of U. Optimization: ICM.
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. . L Energy terms: A — depth estimates
» We design a multi-sensor fusion pipeline that can Unary consistency terms Y z A g d — triangulated distances
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various imaging and sensory modalities.
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» In this work we study the case of two modalities:

Street Level Imagery and LIDAR. o Pairwise term. No occlusions. No spread.
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o High-order term. Penalize not matched rays.

» \We consider detectlon of compact statlonary objects:
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> Street Level Imagery: We perform = N S E — =" i ——
° % Recall % Object-to-estimate distance within (meters)
SEMENIE Segmentat!on _ N Total enerqgy: *an estimate Is considered true positive If it Is within m meters of a ground truth point.
v Monocular depth estimation LS

via state-of-the-art fully CNN models.
These are finetuned on Cityscapes and Mapillary Vistas
street level imagery datasets.

> LIDAR data: We obtain
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Conclusion

Efficient multi-
sensor fusion

Customisable to
various objects

Fully automated

v’ Candidate point extraction — cp +cr +co+cp =1 Relies on Street Level Imagery as primary detection source: performance validated on
via template matching. T o O | | expert (Google Street View) and crowdsourced (Mapillary) imagery.
| latitude _ longitude | » Post-processing strategies:
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Structure from Motion to estimate bearing, adjust GPS.

Conclusions:
» Requires more data to achieve comparable recall;

» Reduced position estimation accuracy.
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