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Mainstream Object Detection Methods 

▪ Two-stage detectors (Faster-RCNN R-FCN FPN etc.)

▪ One-stage detectors (SSD  YOLO RetinaNet etc.)
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Contradiction

▪ Some better localized detections do not correspond to higher classification confidences

▪ Classification confidences can not fully reflect the localization-quality (loc-quality) of each 
detection
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Framework of LED

Classification branch

BBox Regression branch

l For efficiency, LED is designed as 
an one-stage network.

l Following SSD, anchors are 
empirically set on each selected 
layer with multiple sizes based on 
the receptive field, and with 
multiple aspect ratios.





Loc-quality Estimation (LE)

▪ Model

Detection 

Ground Truth

Intersection

▪ We model the loc-quality of a detection by 
several spatial cues

overall-quality

objectiveness-quality

completeness-quality

We denote set of each detection



Loc-quality Estimation (LE)

▪ Richer Features

▪ Features from classification 
subnet and box regression 
subnet are exploited.

▪ Dilated convolution is 
adopted to encode context 
information



Loc-quality Estimation (LE)

▪ Prediction Module

Coarse-to-fine (C2F) prediction module:
Coarse procedure: 

Prediction is regarded as a classification problem, The value range 0-1 is 
discretized into four ranges,                                                ,  referred as the 
background value range, the low value range, the middle value range and the 
high value range respectively

Fine procedure: 
Four independent regressors correspond to the four value ranges 

respectively, regress continuous values relative to “anchors” in corresponding value 
ranges. The “anchors” are set to the median of each value range

We intend to predict the value of each element in set
for each detection 



Loc-quality Estimation (LE)

▪ Prediction Module

Corresponding to the proposed coarse-to-fine (C2F) prediction module, three 
pairs of coarse-fine feature maps are parallel built for the three elements in V. 

For each detection, We obtain set V by:



Loc-quality Estimation (LE)

▪ LE Loss

The softmax loss is adopted as the coarse procedure loss  

The Sharp-L2 loss is proposed as the fine procedure loss

Each element in                                    donates a               and a            , 
thus LE loss             is composed of 6 weighted losses from two types.

▪ The proposed Sharp-L2 loss
Sharp-L2 loss

L2-loss





Loc-quality Estimation Embedded Detector (LED)

▪ Training

Three-step mechanism to optimize LED:

Step 1:  Identical to SSD

Step 2:  Freeze all the weights and bias except LE module

Step 3:  Unfreeze all the weights and bias



Loc-quality Estimation Embedded Detector (LED)

▪ Training

Some training strategies are utilized.

l Matching ground truth bounding box with anchors to obtain training samples
l Hard negative mining to balance negative and positive samples for 

classification and box regression.
l Modified Hard example mining procedure for LE module, based on the LLE
l Data augmentation methods such as expanding, cropping and color distortion 

to improve the generalization performance



▪ Inference

Based on the definition of IoD, IoG, IoU, We first derive:
 

In inference phase, we intend to utilise the estimated loc-quality (IoD, IoG, IoU)

Then we obtain the loclization confidence:  

The overall confidence which integrates both classification confidence and 
localization confidence is obtained by gaussian penalty:  

Finally, NMS is applied based on the overall confidence of each detection.

Loc-quality Estimation Embedded Detector (LED)





▪ Pascal VOC 2007 test results

Experimental Results

PASCAL VOC 2007 test results. All methods are based on pre-trained VGG16, and trained with 
VOC 2007 trainval and VOC 2012 trainval.  ⋆ indicates our own reproducing of SSD300, 
slightly higher than the original one.  With Caffe , on a single NVIDIA Titan X (Pascal) GPU



▪ Ablation studies on Pascal VOC 2007 dataset

Experimental Results

Ablation studies on Pascal VOC 2007. p denotes the setting of corresponding column is 
employed. Otherwise, base prediction feature map instead of richer features (RF), direct 
regression instead of coarse-to-fine (C2F), L2 loss instead of Sharp-L2 loss, LE-Product 
instead of LE-Gaussian. (Evaluation IoU threshold is set to 0.5)
With Caffe , on a single NVIDIA Titan X (Pascal) GPU



▪ KITTI car detection results on validation subset.

Experimental Results

 All methods share the same dataset splits. 
⋆ indicates that the detection results and inference time are obtained from corresponding 
references, otherwise from our experiments. Time indicates mean inference time for one image. 
Mod denotes moderate difficulty and is the metric for ranking.
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