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Motivation
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Mainstream Object Detection Methods
) o=y

= Two-stage detectors (Faster-RCNN R-FCN FPN etc.)
= One-stage detectors (SSD YOLO RetinaNet etc.)
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Contradiction
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= Some better localized detections do not correspond to higher classification confidences

= Classification confidences can not fully reflect the localization-quality (loc-quality) of each
detection
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Contradiction

Input Image Raw Detections
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Overall Architecture
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Framework of LED
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VGG16 Bnd}

Extra Layer;\

Detection

Components

LE-based Inference Phase

CLS Classification branch

Loc | BBox Regression branch

® For efficiency, LED is designed as
an one-stage network.

® Following SSD, anchors are
empirically set on each selected
layer with multiple sizes based on
the receptive field, and with
multiple aspect ratios.




Localization-quanlity Estimation (LE)
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= Model

= We model the loc-quality of a detection by

Detection Sqet
several spatial cues

Intersection S;
overall-quality loU = 5 +%Igt_ 5
objectiveness-quality [ ]) — SSI
det
Ground Truth Sg completeness-quality [ ([ = SSI
gt

We denote set  V={ToD, IoG, 10U} of each detection
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Loc-quality Estimation (LE)
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Richer Features
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= Features from classification
subnet and box regression
subnet are exploited.

= Dilated convolution is
adopted to encode context
information




Loc-quality Estimation (LE) e A
IN\FE

= Prediction Module

We intend to predict the value of each element in set V={IoD, oG, IoU}
for each detection

Coarse-to-fine (C2F) prediction module:
Coarse procedure:

Prediction is regarded as a classification problem, The value range 0-1 is
discretized into four ranges, {0-0.1, 0.1-0.4, 0.4-0.7, 0.7-1.0}, referred as the
background value range, the low value range, the middle value range and the
high value range respectively

Fine procedure:

Four independent regressors correspond to the four value ranges
respectively, regress continuous values relative to “anchors” in corresponding value
ranges. The “anchors” are set to the median of each value range
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Prediction Module

Corresponding to the proposed coarse-to-fine (C2F) prediction module, three
pairs of coarse-fine feature maps are parallel built for the three elements in V.
V={IoD, IoG, IoU}

Richer F eature Fusion Prediction Module
Gony Box Regression Ma conv v
3%3 g p | axa i LE-coarse Map
5 / For each detection, We obtain set V by:
conv 3 X3 WXHX128 1 conv
Base Layer WX HX4A E ﬁ - 4
(e.g. conv 4_3) /VXHX 128 Bl Mg / " 1Y) Vo i
conv 3X3 / Gkt | wxmx4a v = E (prob; - val;),Yvin V
dilation(2) . E LE-fine Map i=1
WX HX 64 i .
g / WA . w}?e're v denot‘es 1o, IoD, or IoGG. prob; denotes the prob-
WXHXCH | o 3 i ooy ability of the i-th value range and val; denotes the finely re-
i X3 gressed value of the ¢-th value range.
WX HX 64 1 | WxHXx4A
conv 3X3 i
| ey 000
Classification Map XHX 128 i Two Omitted Pairs

WXHX (C+)A
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= LE Loss

The softmax loss is adopted as the coarse procedure 10ss Lcoarse

The Sharp-L2 loss is proposed as the fine procedure loss L fine

Each element in V={IoD, IoG, IoU} donates a Lcoarse and a L tine ,
thus LE loss L g is composed of 6 weighted losses from two types.

Sharp-L2 loss,

\
\'\
gt \
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= The proposed Sharp-L2 loss

Sharp—L2(x) =

COl = DI =




Embed LE into An One Stage Framework
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= Training

Three-step mechanism to optimize LED:

Step 1: Identical to SSD
Ly = Lgs + - Lfreg

Step 2: Freeze all the weights and bias except LE module
Ly = LiE
Step 3: Unfreeze all the weights and bias

L3:Lcl5+a'Lreg+/8°LLE
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= Training

Some training strategies are utilized.

® Matching ground truth bounding box with anchors to obtain training samples

® Hard negative mining to balance negative and positive samples for
classification and box regression.

® Modified Hard example mining procedure for LE module, based on the L; ¢

® Data augmentation methods such as expanding, cropping and color distortion
to improve the generalization performance
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= Inference

In inference phase, we intend to utilise the estimated loc-quality (IoD, IoG, IoU)

Based on the definition of IoD, IoG, IoU, We first derive:

IoD - IoG
loD + oG — IoD - [oG

IoU' =

Then we obtain the loclization confidence:
confioe = A IoU + (1 — \) - [oU’

The overall confidence which integrates both classification confidence and
localization confidence is obtained by gaussian penalty:

. (1—.::0?1,_}“106)2
conf = conf.s-e o

A and o are set to 0.6 and 1 respectively

Finally, NMS is applied based on the overall confidence of each detection.



Experimental Results
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Experimental Results e

= Pascal VOC 2007 test results

PASCAL VOC 2007 test results. All methods are based on pre-trained VGG16, and trained with
VOC 2007 trainval and VOC 2012 trainval. * indicates our own reproducing of SSD300,
slightly higher than the original one. With Caffe, on a single NVIDIA Titan X (Pascal) GPU

Approach FPS mAP aero bike bird boat bottle bus car cat

Faster R-CNN [4] - 732 76.5 79.0 709 655 52.1 831 847 864
RON384 [18] - 75.4 78.0 824 76.7 67.1 569 853 843 86.1
SSD300* 94 77.6 79.2 84.0 76.1 695 506 869 859 887
LED300 65 78.7 82.7 865 769 717 517 87.1 88.0 89.9

chair cow table dog horse mbike personplant sheep sofa train tv

520 819 657 848 846 775 767 388 736 739 830 726
555 806 714 847 848 824 762 479 753 741 838 745
604 813 768 862 874 836 794 529 792 796 876 711
60.8 84.0 749 88.2 879 851 813 525 795 808 87.6 76.8
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Experimental Results e

= Ablation studies on Pascal VOC 2007 dataset

Ablation studies on Pascal VOC 2007. p denotes the setting of corresponding column is
employed. Otherwise, base prediction feature map instead of richer features (RF), direct
regression instead of coarse-to-fine (C2F), L2 loss instead of Sharp-L2 loss, LE-Product
instead of LE-Gaussian. (Evaluation IoU threshold is set to 0.5)

With Caffe, on a single NVIDIA Titan X (Pascal) GPU

Model RF £ 2F Sharp-L2  LE-Gaussian mAP
77.4
719
78.3
78.5
v 78.7
SSD300540% 117

LED300

R AR
A
ol




Experimental Results
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= KITTI car detection results on validation subset.

All methods share the same dataset splits.

* indicates that the detection results and inference time are obtained from corresponding
references, otherwise from our experiments. Time indicates mean inference time for one image.
Mod denotes moderate difficulty and is the metric for ranking.

Approach Time Easy Mod Hard
3DVP [24]* 40s 8048 68.05 57.20
Faster R-CNN [4]* 2s 8291 7783 66.25
SubCNN [22]* 2s 95.77 86.64 74.07
DeepMANTA (GoogLenet) [23]* 0.7s 9790 91.01 83.14
DeepMANTA (VGG16) [23]* 2s 9745 9147 81.79
SSD 0.07s 9650 88.11 77.52
LED (single) 0Didls 9731 9132 KL
LED (ensemble) 0.33s 97.51 91.93 83.11
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