On Regression Losses for Deep Depth Estimation
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Motivation Experiments and Results | Work
w Previous works usually propose both new architecture and regression losses:; In |9(, we explore D3-Net to perform depth estimation with the presence ot defocus
: p p p p
w Lew comparisons are made between loss functions using same architecture. a4 nfluence of the Dataset Training Size ) blur.
We propose: on Performances _ _ _ q _ .
w D3-Net: new architecture based on the reuse of previous feature maps that achieves -)eep -)epth-fmm--)ef@ CUS ()F)) with real data
top results on depth estimation (code on github); Lo . N We create a new dataset with a platform which contains a
w [nd-to-end conditional-GAN for depth estimation based on [1]; Tow DSLR camera and a RCB-D sensor.
w Different experiments to compare the performances of the regression losses from ol | | w Pretrain on defocused NYUv2:
the state-of-art. \_ 4 w [inetune on real data.
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Different Front-End Comparison (ResNef vs. DenseNet) . SUs ATlon Y all-in-focus Truth DFD N=2.8 N=8 N=8 (resize)
D3-Net is an encoder-decoder based on U-Net and DenseNet-121 for the encoder. - e : RMS per model A | e |
sklp connections . S Z:: g 78% 07
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w The reuse of previous feature maps improve information flow during learning; .
w Skip and dense connections easy gradient back-propagation to the bottom layers
reducing vanishing gradient problems. & 2 o< TR ﬁ _ o . .
S T S L R Deep-DFD 1n the wild with outdoor scenes
Patch-GAN We now observe the network generalization to outdoor challenging scenes.
w \We adapt the conditional patch GAN proposed in [1| to depth esti- N Error| Accuracy? RO allinfocrs i N e o i
mation using the LSGAN and a smaller discriminator; rel logl0 rms rmslog  §<1.250 <1252 5<1.25° s o
o
w [nstead of classifying if the entire image is True/False, the discrimi- Eigen [3] 0.158 - 0.641 0214  76.9% 95.0% 98.8% re ‘ | %
, , Laina [4] 0.127 0.055 0.573 0.195  81.1% 95.3% 98.8% /i -
native network classifies by patches. Xu [6] 0.1210.052 058 -  81.1% 95.4% 98.7% | = :;-‘;
Jung|[7] 0.134  -0.527 - 82.2% 97.1% 99.3% | | . | o
R . L Kendall and Gal [§] 0.110 0.045 0.506 - 81.7% 95.9% 98.9% ;
€gression LOoSSeS D3-Net* 0.136 - 0.504 ~82.1% 95.5% 98.7%
*Results were updated from original paper.
Our experiments make use of the following common losses for regression: w 1 data leads to better results;
0 Founti w [ .0sses evolve differently when increasing available data;
0SS uation . . . . .
ks = w [ ,an becomes highly efficient with more data, which helps on the stability of the
Mean absolute L4 % > method. Conclusions:
Mean square Lo &ZN (1 )2 w DenseNet gets better performances compared to ResNet: w (Combined information of geometrical structure and defocus blur avoids classical
SI loss 2] Leigen Z ds — NA(Z?{ d;)? w £ and Legen show better results for the ensemble of the experiments; limitations of DFD techniques;
SI loss with gradients |3] ﬁezgengm 4 Z d2 5 ]@2(2?[ d¢)2+% va (V,di)*+ w Best results using L, show better segmented images and more object details. = Deep-DFD is a promissing method to generalize learning depth estimation;
(V, di)? ] . N o 5 _— . N i w (Co-conception of a sensor and a deep depth estimation methods.
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