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Marcela Carvalho1, Bertrand Le Saux1, Pauline Trouvé-Peloux1, Andrés Almansa2, Frédéric Champagnat1

ONERA/DTIS1, Université Paris Descartes2
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Motivation

➥ Previous works usually propose both new architecture and regression losses;
➥ Few comparisons are made between loss functions using same architecture.
We propose:

➥ D3-Net: new architecture based on the reuse of previous feature maps that achieves
top results on depth estimation (code on github);
➥ End-to-end conditional-GAN for depth estimation based on [1];
➥ Different experiments to compare the performances of the regression losses from
the state-of-art.

Network Architecture

D3-Net is an encoder-decoder based on U-Net and DenseNet-121 for the encoder.

➥ The reuse of previous feature maps improve information flow during learning;
➥ Skip and dense connections easy gradient back-propagation to the bottom layers
reducing vanishing gradient problems.

Patch-GAN

➥ We adapt the conditional patch GAN proposed in [1] to depth esti-

mation using the LSGAN and a smaller discriminator;

➥ Instead of classifying if the entire image is True/False, the discrimi-

native network classifies by patches.

Regression Losses

Our experiments make use of the following common losses for regression:
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Let yi and ŷi be the ground truth and the estimated distance in meters, li = yi − ŷi,
di = log(yi) − log(ŷi), G, the generator network, D, the discriminator network and
x, the input image.

Experiments and Results

Influence of the Dataset Training Size
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Different Front-End Comparison (ResNet vs. DenseNet)
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Convergence Speed Comparison
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Methods
Error↓ Accuracy↑

rel log10 rms rmslog δ<1.25 δ<1.252 δ<1.253

Eigen [3] 0.158 - 0.641 0.214 76.9% 95.0% 98.8%
Laina [4] 0.127 0.055 0.573 0.195 81.1% 95.3% 98.8%
Xu [6] 0.121 0.052 0.586 - 81.1% 95.4% 98.7%
Jung[7] 0.134 - 0.527 - 82.2% 97.1% 99.3%
Kendall and Gal [8] 0.110 0.045 0.506 - 81.7% 95.9% 98.9%
D3-Net* 0.136 - 0.504 - 82.1% 95.5% 98.7%

*Results were updated from original paper.

➥ ↑ data leads to better results;
➥ Losses evolve differently when increasing available data;
➥ Lgan becomes highly efficient with more data, which helps on the stability of the
method.
➥ DenseNet gets better performances compared to ResNet;
➥ L1 and Leigen show better results for the ensemble of the experiments;
➥ Best results using Lgan show better segmented images and more object details.
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Work

In [9], we explore D3-Net to perform depth estimation with the presence of defocus
blur.

Deep Depth-from-Defocus (DFD) with real data
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We create a new dataset with a platform which contains a
DSLR camera and a RGB-D sensor.
➥ Pretrain on defocused NYUv2;
➥ Finetune on real data.
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Deep-DFD in the wild with outdoor scenes
We now observe the network generalization to outdoor challenging scenes.
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Conclusions:
➥ Combined information of geometrical structure and defocus blur avoids classical
limitations of DFD techniques;
➥ Deep-DFD is a promissing method to generalize learning depth estimation;
➥ Co-conception of a sensor and a deep depth estimation methods.
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