THE FRENCH AEROSPACE LAB

ONERA

Motivation

 \blacktriangleright Previous works usually propose both new architecture and regression losses; \blacktriangleright Few comparisons are made between loss functions using same architecture. We propose:

 \rightarrow D3-Net: new architecture based on the reuse of previous feature maps that achieves top results on depth estimation (code on github);

 \blacktriangleright End-to-end conditional-GAN for depth estimation based on [1];

→ Different experiments to compare the performances of the regression losses from the state-of-art.

Network Architecture

D3-Net is an encoder-decoder based on U-Net and DenseNet-121 for the encoder.

 \blacktriangleright The reuse of previous feature maps improve information flow during learning; Skip and dense connections easy gradient back-propagation to the bottom layers reducing vanishing gradient problems.

Patch-GAN

 \blacktriangleright We adapt the conditional patch GAN proposed in [1] to depth estimation using the LSGAN and a smaller discriminator; ▶ Instead of classifying if the entire image is True/False, the discriminative network classifies by patches.

Regression Losses

Our experiments make use of the following common losses for regression:

Loss		Equation
Mean absolute	\mathcal{L}_1	$\frac{1}{N}\sum_{i}^{N} \mid l_{i} \mid$
Mean square	\mathcal{L}_2	$\frac{1}{N}\sum_{i}^{N}\left(l_{i}\right)^{2}$
SI loss $[2]$	\mathcal{L}_{eigen}	$rac{1}{N}\sum_{i}^{N}d_{i}^{2}-rac{\lambda}{N^{2}}(\sum_{i}^{N}d_{i})^{2}$
SI loss with gradients $[3]$	$\mathcal{L}_{eigengrad}$	$d\frac{\frac{1}{N}\sum_{i}^{N}d_{i}^{2}-\frac{\lambda}{2N^{2}}(\sum_{i}^{N}d_{i})^{2}+\frac{1}{N}\sum_{i}^{N}d_{i}^{2})^{2}}{(\nabla d_{i})^{2}}$
BerHu [4]	\mathcal{L}_{berhu}	$egin{cases} \left\{egin{array}{ll} \mathcal{L}_1(l_i) & \mathcal{L}_1(l_i) \gtrless c, \ rac{\mathcal{L}_2(l_i)+c^2}{2c} & else. \end{array} ight.$
Huber [4]	\mathcal{L}_{huber}	$egin{cases} \mathcal{L}_1(l_i) & \mathcal{L}_1(l_i) \geqslant c, \ rac{\mathcal{L}_2(l_i)+c^2}{2c} & else. \end{cases}$
LSGAN $[5, 1]$	\mathcal{L}_{gan}	$\frac{1}{2} \mathbb{E}_{x,y \sim p_{data}(x,y)} [(D(x,y) - $
		$\frac{1}{2} \mathbb{E}_{x \sim p_{data}(x)} [(D(x, G(x)) - \lambda \mathcal{L}_{L1}(G(x)))] - \lambda \mathcal{L}_{L1}(G(x))]$

Let y_i and \hat{y}_i be the ground truth and the estimated distance in meters, $l_i = y_i - \hat{y}_i$, $d_i = log(y_i) - log(\hat{y}_i), G$, the generator network, D, the discriminator network and x, the input image.

On Regression Losses for Deep Depth Estimation

Marcela Carvalho¹, Bertrand Le Saux¹, Pauline Trouvé-Peloux¹, Andrés Almansa², Frédéric Champagnat¹

 $ONERA/DTIS^1$, Université Paris Descartes²

Experiments and Results

	Methods	Error↓	Accuracy↑
		rel log10 rms rmslog	$\delta \! < \! 1.25 \delta \! < \! 1.25^2 \delta \! < $
	Eigen [3]	0.158 - 0.641 0.214	76.9% 95.0% 98.8%
	Laina [4]	$0.127 \ 0.055 \ 0.573 \ 0.195$	81.1% 95.3% 98.8%
	Xu [6]	0.121 0.052 0.586 -	81.1% 95.4% 98.7%
	$\operatorname{Jung}[7]$	0.134 - 0.527 -	82.2% 97.1% 99.3%
	Kendall and Gal [8]	0.110 0.045 0.506 -	81.7% 95.9% 98.9%
	$D3-Net^*$	0.136 - 0.504 -	82.1% 95.5% 98.7%
	*Results were upda	ated from original paper.	
A 7 .	1 1 1 1 1 1		

 $\sum_{i=1}^{N} [(\nabla_x di)^2 + 1]$

BN+relu+conv3x3

 $(1)^{2}$

 \rightarrow \uparrow data leads to better results; \blacktriangleright Losses evolve differently when increasing available data; $\blacktriangleright \mathcal{L}_{gan}$ becomes highly efficient with more data, which helps on the stability of the method.

 \blacktriangleright DenseNet gets better performances compared to ResNet; $\blacktriangleright \mathcal{L}_1$ and \mathcal{L}_{eigen} show better results for the ensemble of the experiments; \blacktriangleright Best results using \mathcal{L}_{qan} show better segmented images and more object details.

LScGAN+L1 Ground truth

Eigen 2

In [9], we explore D3-Net to perform depth estimation with the presence of defocus blur.

Deep Depth-from-Defocus (DFD) with real data

We create a new dataset with a platform which contains a DSLR camera and a RGB-D sensor. \blacktriangleright Pretrain on defocused NYUv2; \blacktriangleright Finetune on real data.

RGB

Deep-DFD in the wild with outdoor scenes

We now observe the network generalization to outdoor challenging scenes. RGB all-in-focus D3-Net Zhuo [10] N=2.8N=2

Conclusions:

 \blacktriangleright Combined information of geometrical structure and defocus blur avoids classical limitations of DFD techniques; \blacktriangleright Deep-DFD is a promissing method to generalize learning depth estimation;

References

[1] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional [9] M. Carvalho, B. Le Saux, P. Trouvé-Peloux, A. Almansa, and F. Champagnat, "Deep depth adversarial networks," arXiv preprint arXiv:1611.07004, 2016. from defocus: how can defocus blur improve 3D estimation using dense neural networks?" 3DRW ECCV Workshop, 2018. [2] D. Eigen, C. Puhrsch, and R. Fergus, "Depth map prediction from a single image using a [10] S. Zhuo and T. Sim, "Defocus map estimation from a single image," *Pattern Recognition*, 2011. multi-scale deep network," NIPS, 2014. [3] D. Eigen and R. Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture," ICCV, 2015. [4] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, "Deeper depth prediction with fully convolutional residual networks," in 3D Vision (3DV), 2016 Fourth International *Conference on.* IEEE, 2016, pp. 239–248. [5] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, "Least squares generative adversarial networks," arXiv preprint ArXiv:1611.04076, 2016. [6] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe, "Multi-scale continuous crfs as sequential deep networks for monocular depth estimation," arXiv preprint arXiv:1704.02157, 2017. [7] H. Jung, Y. Kim1, D. Min, C. Oh, and K. Sohn, "Depth prediction from a single image with conditional adversarial networks," in ICIP, 2017.

- [8] A. Kendall and Y. Gal, "What uncertainties do we need in bayesian deep learning for computer vision?" arXiv preprint arXiv:1703.04977, 2017.

Work

 \blacktriangleright Co-conception of a sensor and a deep depth estimation methods.

github.com/marcelampc/d3net_depth_estimation