3D Multi-Scale Convolutional Networks For Glioma Grading using MR Images

Chenjie Ge, Qixun Qu, Irene YH Gu, Asgeir S Jakola²

¹ Dept. of Electrical Eng., Chalmers Univ. of Technology, Sweden ² Sahlgrenska University Hospital, Sweden

Contents

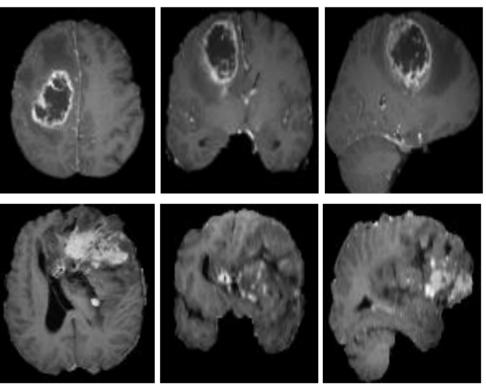
- 1. Introduction
- 2. Review: related work
- 3. Proposed method
- 4. Test results and evaluation
- 5. Conclusion

1. Introduction Addressed issue

Deep learning for brain tumor classification using MRIs (+ biomarkers)

High Grade Glioma, HGG (in axial, coronal, sagittal views)

Low Grade Glioma, LGG



Why glioma classification using MRIs ?

- Tumor grading is important to clinical planning
- Non-invasive method for diagnostics
- Determine tumor types without biomarker

Picture from:Website in University of Utah

2. Related Work: Review

Using hand-crafted features [2,3]

e.g. size, shape, location, intensity, texture of tumors

- Using deep learning for features [4]
 3 layer 2D CNN structure and large size kernels
- Combined models (traditional ML and DL) [5]
 Fish vector (through clustering) to encode DL learned features
- Using 2D CNN for learning features [Ge'18]
 based on slice of MRIs and simple augmentation

3. Proposed Method: Motivation

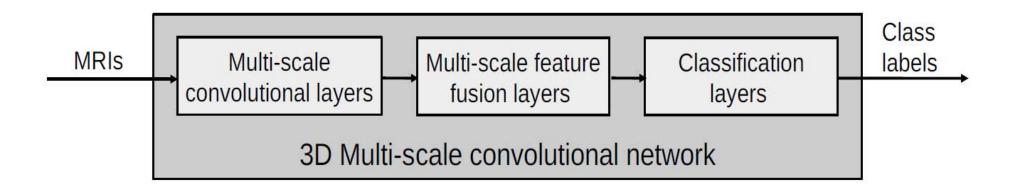
Brain tumors may vary in shape, size and location

Tumor characterization: using multi-scale learning to capture both image-level and semantic-level features

• Tumor is relatively small in a 3D volume image

Require: saliency-awareness for highlighting the tumor area, where deep learning can be focused on.

3. Proposed Method: Overview

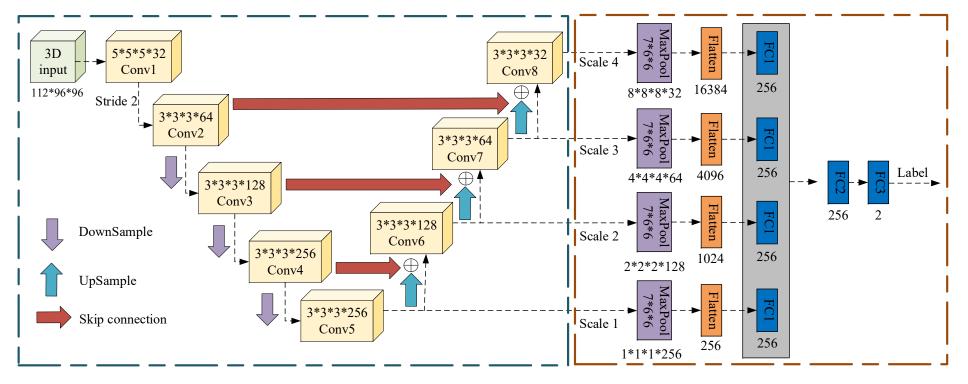


Main Novelties

- Multi-scale 3D CNN architecture for feature learning.
- Fusion of multi-scale features
- Saliency-aware strategy to enhance tumor regions in MRIs.

CHALMERS

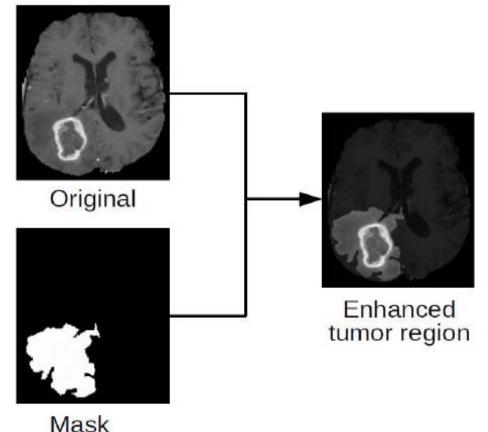
3. Proposed method: 3D multi-scale CNN scheme



Difference from [6] (using pyramid-structure CNNs):

- Different applications: MRIs (vs Visual images)
- 3D (vs 2D), different architecture (# layers, hyper-parameters etc.).
- End-to-end scheme

c) Saliency-aware tumor enhancement



Tumor enhancement with segmentation masks, reducing intensity values in non-tumor region (to 1/3)

4. Test Results and Evaluation

a) Dataset: BraTS 2017

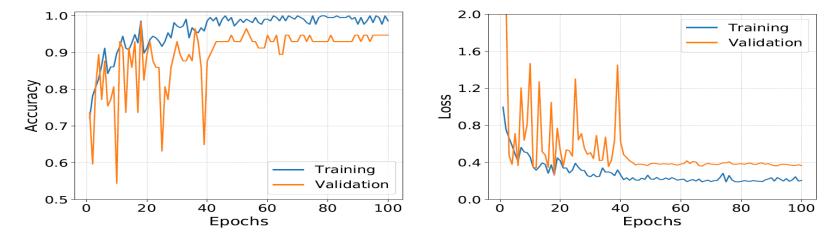
class	# subjects	#scans in	#scans in	#scans in	#scans in		
	-	en-T1-MRI	tra. set	val. set	test set		
HGG	210	210	126	42	42		
LGG	75	75	(45(90))	15	15		
Flipping for data							
augmentation in LGG							

4. Test Results and Evaluation

b) Setup

- Use KERAS library with TensorFlow backend
- Use "Adam" optimizer for the back propagation
- Step-wise learning rate: 0.001 for epochs 1-40;
 0.0001 for epochs 41-70; 0.00001 for epochs 71-100
- Dataset partitioned randomly: training (60%), validation(20%), testing (20%)
- Use drop out, L2 regularization to mitigate the overfitting

c) Performance



Performance using the proposed scheme. Left: accuracy vs. epochs; right: loss vs. epochs.

Performance	training	validation	test
accuracy	98.61%	94.74%	89.47%

Overall performance

 True/classified
 HGG
 LGG

 HGG
 90.48%
 9.52%

 LGG
 13.33%
 86.67%

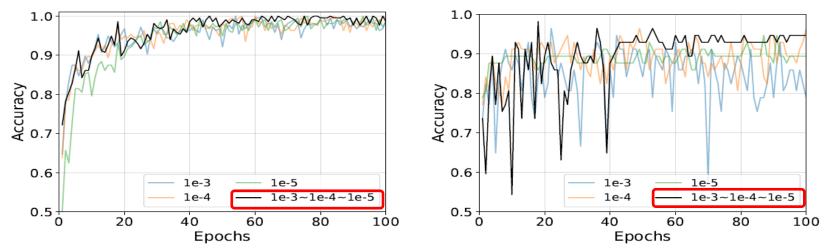
Confusion matrix on the test set

Run	1	2	3	4	5	Average
Acc.(%)	89.47	85.96	87.72	89.47	87.72	88.07

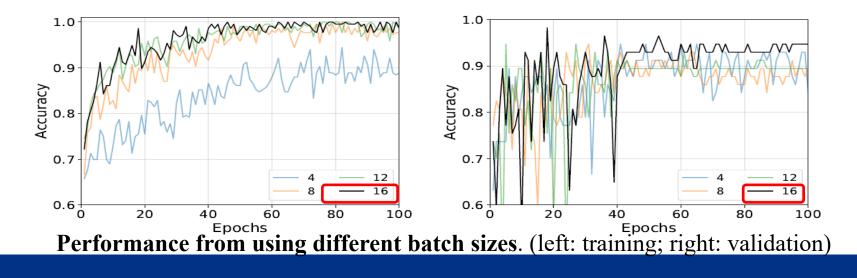
Performance of 5 runs on the test set (with datasets randomly re-partitioned)

CHALMERS

d) Empirical analysis on hyper-parameters



Performance from using different learning rates. (left: training; right: validation).



d) Comparison: with/without saliency enhancement

Method	Without enhancement	With enhancement
Training accuracy(%)	99.01	98.61
Validation accuracy(%)	85.96	94.74
Test accuracy (%)	84.21	89.47

Remarks:

Performance of glioma classification was heavily dependent on the tumor masks

e) Comparison and Discussion

	Method	Accuracy
Pan [4]	CNN	73.33%
Ge [*]	CNN	90.87%
Proposed scheme	CNN	89.47%

Comparison: with other glioma grading methods (HGG/LGG).

	Glioma classes	Method	Accuracy
Macyszyn [2]	Glioblastoma: 4 classes	SVM	75.56%
Yu [3]	IDH mutation: 2 classes	SVM	80.00%
Li [5]	IDH mutation: 2 classes	CNN	86.55%
Akkus [12]	1p19q prediction: 2 classes	CNN	87.70%
Ge [*]	1p19q prediction: 2 classes	CNN	89.39%

Related classifier: other glioma classification methods (using biomarkers)

[*] C Ge, I Gu, A Jakola, J Yang. Deep Learning and Multi-Sensor Fusion for Glioma Classification using Multistream 2D Convolutional Networks, in EMBC 2018.

5. Conclusion

Proposed a 3D multi-scale CNN architecture for glioma grading using MRIs

- Characterize tumors by image- and semantic-level features
- Saliency-awareness for enhancing tumor regions
- Multi-scale feature fusion

Results showed

- Proposed network architecture is effective for brain tumor classification
- Salient region enhancement improves the performance
- Performance comparable to the state-of-the-art

Future/ongoing work

- Tests on larger datasets
- Extend to clinically more important issues: classification of different types of gliomas (e.g., IDH mutation, 1p19q codeletion ...)
- Apply saliency techniques to enhance the tumor regions without requiring masks.
- Robust data augmentation for enlarging training dataset

Thank you for your attention!

Questions?