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Addressed issue
Deep learning for brain tumor classification 

using MRIs (+ biomarkers) 

1. Introduction

High Grade Glioma, HGG
(in axial, coronal, sagittal 
views)

Low Grade Glioma, LGG
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Why glioma classification using MRIs ?
 Tumor grading is important to clinical planning
 Non-invasive method for diagnostics
 Determine tumor types without biomarker 

Picture from:Website
in University of Utah
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2. Related Work: Review
 Using hand-crafted features [2,3]

e.g. size, shape, location, intensity, texture of tumors

 Using deep learning for features [4]
3 layer 2D CNN structure and large size kernels

 Combined models (traditional ML and DL) [5]
Fish vector (through clustering) to encode DL learned features

 Using 2D CNN for learning features [Ge’18] 
based on slice of MRIs and simple augmentation
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3. Proposed Method： Motivation
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 Brain tumors may vary in shape, size and location

Tumor characterization: using multi-scale learning to
capture both image-level and semantic-level features 

 Tumor is relatively small in a 3D volume image

Require: saliency-awareness for highlighting the tumor
area, where deep learning can be focused on.
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3. Proposed Method:  Overview

Main Novelties
 Multi-scale 3D CNN architecture for feature learning.
 Fusion of multi-scale features 
 Saliency-aware strategy to enhance tumor regions in MRIs.
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3. Proposed method: 3D multi-scale CNN scheme

8

3D 
input

5*5*5*32
Conv1

3*3*3*64
Conv2

3*3*3*128
Conv3

3*3*3*256
Conv4

3*3*3*256
Conv5

3*3*3*128
Conv6

3*3*3*64
Conv7

3*3*3*32
Conv8

Stride 2

DownSample

UpSample

Skip connection 

112*96*96

M
axPool

7*6*6
M

axPool
7*6*6

M
axPool

7*6*6
M

axPool
7*6*6

Flatten

Scale 1

Scale 2

Scale 3

Scale 4

Flatten
Flatten

Flatten

FC1
FC1

FC1
FC1

FC2

FC3

1*1*1*256 256

2*2*2*128

4*4*4*64

8*8*8*32

1024

4096

16384

256

256

256

256

256 2

Label

Difference from [6] (using pyramid-structure CNNs):
• Different applications: MRIs (vs Visual images) 
• 3D (vs 2D), different architecture (# layers, hyper-parameters etc.).
• End-to-end scheme 



Chalmers University of Technology

9

Tumor enhancement with segmentation masks, reducing 
intensity values in non-tumor region (to 1/3)

c) Saliency-aware tumor enhancement
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4. Test Results and Evaluation

a) Dataset: BraTS 2017 
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Flipping for data 
augmentation in LGG
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4. Test Results and Evaluation

b) Setup

 Use KERAS library with TensorFlow backend
 Use “Adam” optimizer for the back propagation
 Step-wise learning rate:  0.001 for epochs 1-40; 

0.0001 for epochs 41-70; 0.00001 for epochs 71-100
 Dataset partitioned randomly: 

training (60%), validation(20%),testing (20%)
 Use drop out, L2 regularization to mitigate the overfitting
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c) Performance
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Overall performance Confusion matrix on the test set

Performance using the proposed scheme. Left: accuracy vs. epochs; right: loss vs. epochs.

Performance of 5 runs on the test set (with datasets randomly re-partitioned)
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d) Empirical analysis on hyper-parameters
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Performance from using different learning rates. (left: training; right: validation).

Performance from using different batch sizes. (left: training; right: validation)
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Remarks: 
Performance of glioma classification was heavily dependent on 
the tumor masks

d) Comparison: with/without saliency
enhancement
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e) Comparison and Discussion
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Comparison: with other glioma grading methods (HGG/LGG). 

[*] C Ge, I Gu, A Jakola, J Yang. Deep Learning and Multi-Sensor Fusion for Glioma Classification
using Multistream 2D Convolutional Networks, in EMBC 2018.

Related classifier: other glioma classification methods (using biomarkers) 
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5. Conclusion
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Proposed a 3D multi-scale CNN architecture for glioma 
grading using MRIs
 Characterize tumors by image- and semantic-level features
 Saliency-awareness for enhancing tumor regions  
 Multi-scale feature fusion
Results showed
 Proposed network architecture is effective for brain tumor 

classification
 Salient region enhancement improves the performance
 Performance comparable to the state-of-the-art 



Chalmers University of Technology

Future/ongoing work
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 Tests on larger datasets
 Extend to clinically more important issues: 

classification of different types of gliomas 
(e.g., IDH mutation, 1p19q codeletion …)

 Apply saliency techniques to enhance the tumor regions 
without requiring masks.  

 Robust data augmentation for enlarging training dataset
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Thank you for your attention!

Questions ?
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