

Coalition Game for Emergency Vehicles Re-routing in Smart Cities

Hayder M. Amer^a, Hayder A. A. Al-Kashoash^b, Andrew Kemp^c, Lyudmila Mihaylova^a and Martin Mayfield^d

^a University of Sheffield, ACSE, UK
 ^b Southern Technical University, Basra, Iraq
 ^c University of Leeds, UK
 ^d University of Sheffield, Civil Engineering, UK

IEEE SAM Conference 2018

Outline

- 1. Introduction
- 2. The Proposed Game Coalition Framework
 - Road networks
 - Coalition game of emergency vehicles
- 3. Performance Validation and Evaluation
- 4. Conclusions and Future Work

Introduction

- Impact of traffic congestion:
 - Increases travel journey
 - Increases accidents on roads
 - Increases road deaths
 - Increases fuel consumption and CO2 emissions.
- So, traffic congestion control mechanism is important in smart cities.
- VANETs include Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication systems.
- Both systems can be used to collect traffic information.

The Proposed Framework

- This system includes three phases are:
 - Data collection
 - Road network
 - Coalition game of emergency vehicles
- Each vehicle sends Road ID and average velocity using hello packets.

• Road Network: road network can be modelled as a directed graph G = (N, E). $T_L R_L D_L = H_1 \lceil r_{11} r_{12} r_{13} \rceil$

 $H = \begin{bmatrix} \vdots & \vdots & \vdots \\ H_v \begin{bmatrix} \vdots & \vdots & \vdots \\ r_{v1} & r_{v2} & r_{v3} \\ w_1 & w_2 & w_3 \end{bmatrix}$ • The normalized road matrix has been obtained using the following equation:

 $H_2 \mid r_{21} \quad r_{22} \quad r_{23}$

$$r_{jk} = \frac{\max_{\forall i} \{x_{jk}\} - x_{jk}}{\max_{\forall i} \{x_{jk}\} - \min_{\forall i} \{x_{jk}\}}.$$
$$r = \{r_{jk} | j = 1, \dots, v; k = 1, 2, 3\}$$

• The speed ratio is defined to numerically represent the traffic state of a road as follows:

- Main parameters of the cost function:
 - Road travel time, road length, density of vehicles
- A linear relationship between speed and density (Greenshield's model, [1])

The current traffic density:

The maximum jam density:

Density ratio:

 $D_L = D_q (1 - V_r)$ $D_q = g \frac{L_i}{Avg_L}$ $D_r = \frac{D_L}{D_q}$ $V_r = 1 - D_r$

Velocity ratio

[1] M. A. Chowdhury, A. W. Sadek, Fundamentals of intelligent transportation systems planning, Artech House, U.S., 2003.

• The cost function of the emergency vehicle:

$$f = \min\{w_1 T_L + w_2 R_L + w_3 D_L\}$$

Coalition Game for Emergency Vehicles

- A normal form cooperative game is a couple (*N*, *U*) where:
 - *N* is a set of players.
 - U is a value function that assigns a real value to every coalition $C \in 2^N$.
- $EV = \{EV_1, EV_2, \dots, EV_n\}$ represents number of players or emergency vehicles.
- Each route in $R = \{a_1, a_2, \dots, a_m\}$ generated from PSO is considered as a coalition in the game and each EV in N will play a strategy $S = \{join, not join\}$ that is EV prefer to join for a certain coalition or not.

Coalition Game of Emergency Vehicles

Algorithm 1 The particle swarm algorithm.

- 1: Initialize the particle array with some random solutions.
- 2: Loop

For each particle z with position p_z in S domain do

Estimate the fitness function f for each particle as in (7).

If $f(p_z) < f(pbest)$

 $pbest = p_z$

where pbest is the location of the best fitness of all visited location.

End If

 $\begin{array}{l} \text{If } f(pbest) < f(gbest) \\ gbest = pbest \end{array}$

where gbest is the best location or solution found so far.

End If

End For

3: Update particle velocity and position. For each particle z in S do

$$vs = vs + e_1 rand()(pbest - p_z) + e_2 rand()(gbest - p_z)$$
(8)

$$p_z = p_z + vs \tag{9}$$

End For

Here, v is the particle velocity, p_z is the current solution. rand () is a random number between (0, 1). e_1 and e_2 are learning factors. Usually $e_1 = e_2 = 1$.

- 4: T = T + 1 advanced iteration.
- 5: Exit the loop, if $T \ge T_{max}$.

6: **End**.

Coalition Game for Emergency Vehicles

- Communication among emergency vehicles and RSU is based on query and response messages.
- Each emergency vehicle send a query to request an optimal route or coalition from the RSU.
- RSU send a response messages that contain the optimal routes.
- Emergency vehicles send the coalition name to other vehicles to join this group or the second one.

Performance Evaluation

Birmingham New Street Train Station

Performance Evaluation

Performance Evaluation

Conclusions and Future Work

- We propose a new dynamic approach called GA-PSO for the emergency vehicles routing.
- GA-PSO has been tested under traffic scenarios and compared with two other algorithms ODA and D-DA.
- GA-PSO has better performance in terms of:
 - Travel time.
 - Fuel consumption.
 - CO2 emissions.
 - Average travel speed.

Thank you!