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[ I. Big Picture —Data-Driven System for Lung Nodule Analysis J

System Components, as illustrated below:

1) Lung Tissue Segmentation — To isolate the lungs from the other tissues in the chest

2) Nodule Detection A

4) Nodule Categorization

Nodule Modeling Data-Driven Nodule Learning from LDCT: OFFLINE

Radiologists create ensembles of nodules from a LDCT screening
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l Active Appearance Approach(AAM) creates shape templates, eigen nodules and nodule representation l

Modeling

-

3) Nodule Segmentation - These steps require proper nodule models
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[ II. Main Purpose and Contribution J

» This work devises an automatic approach for
creating elastic deformable nodule templates
using the AAM approach and biomarkers

on the nodule contours a o 1
* New templates were used in the E.,Jf l’ {.Q/ 5 o QP
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detection process resulting in Rl
simultaneous improvement \,ﬂf”f

in Sensitivity and Specificity - Critical points for annotation (left to right): juxta-pleural, pleural-tail, vascularized and well-circumscribed

* Framework presented that conducts feature
extraction and classification using cascaded SVM
in a CNN architecture to identify non-nodules,
malignant and benign nodules.
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| 1IL. Deformable Active Appearance Modeling |
\ J

d Given location x, in the nodule’s spatial support, C = {c;,i € [1,L]} represents a single set of

realizations (e.g., shapes or appearances or both). The combined AAM approach represents the

shape S(x) and appearance A(x) such that:
S(x) = So(x) + Xizo ¢ Si(x) and A(x) = Ay (x) + Zl 0 Ci A;(x)

S,() and 4,(-) ~ Average shape and appearance realizations

Novel Automatic Nodule Annotation and Alignment:

J Generate nodule models using 24 manually annotated nodules per category

J Extract feature points for each nodule image per types using high and low curvature regions

 Register the nodule samples using the maximum or minimal curvature points as reference

d Modified Iterative Closest Point computes the transformation matrix by exploiting the curvature information
d Construct updated AAM Models

Main issues in developing AAM:

d Shape definition — shape representation as contours, signed-distance, histograms, etc.
d Shape annotations — which features to select
d Uncertainties — with deformations, imaging errors, and size

Lung Nodules suffer from:
d Inconsistency of shape definitions among clinicians
d Resolution of CT scans
d Size makes it worse
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IV. NAS Data Driven System J
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(i) Nodule candidate detection
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Detected and Segmented Nodules from LIDC Study

(cr Segmented nodules by level set method. Green:
V2 Initial contour; Red: segmented detected nodule.

(ii) False positive reduction

(a) Template design

using AAM

_ (b) NodL_JIe'detection
- Nodule detection framework. a) Adaptive updates of AAM nodule models. Manually

annotated ensemble is used to generate average Ay, nodule model per category. Larger
ensembles are co-registered with A, to generate updated AAM models A, for detection.
b) Detection performed by template matching followed by false positive reduction.
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* 50 scans. 1.25 mm thickness
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{ VI. Conclusions J

J A general fully automatic approach has been developed to

1 T = S—— create deformable templates from an ensemble of lung nodules
03 -2 I J A fully model-based mechanism to detect, authenticate
- 7 (reduce false positives) and segment/crop the nodules for

e Ll | the last step in the CAD system, classification, is presented
E 0 for detection wsing the four templates Ay, A, Ao and A,

E 0.4 RO for detection using the four temeplates Agy, Agw, Ag; and Agp
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