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Convolutional Neural Networks

2
g

cat Peat
convolution + max pooling
nonlinearity
convolution + pooling layers fully connected layers  Nx binary classification

e Convolution: feature extraction by convolving various filters over input
image
e Fully-connected: linear transform over input features

e Pooling and Non-linear: perform down sampling and non-linear func-
tion
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Major Challenges

e Computation-intensive: convolution takes up over 95% of ovarall com-
plexity

— O(N?K?) complexity per image — Prohibitive complexity

— Floating point MAC is expensive —> Low energy efficiency

e Memory-intensive: FC layers contribute 90% parameters
— Densely connected networks — Millions of weights

— Massive data movement — Bandwidth limitation
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2. Related Work and Problem Formulation



Low-precision Neural Networks

e Binarized Neural Networks
— Binary weights {—1, +1} with scaling factor «
— Activation: 32-bit float
— « is determined by Li-norm of weights

— Accuracy degradation: 19% on AlexNet
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Low-precision Neural Networks

e Ternary Weight Nets
— Ternary weights {—1,0,+1} with scaling factor o
— Activation: 32-bit float
— Adding zero value increases expressive abilities of weights
— Accuracy degradation: 3.7% on AlexNet

e Objective of BNNs and TWNs

— Minimize distance between full precision weights W and the ternary weights
W using scaling factor a:

o, W' = argmin ||[W — aW"|?
a, Wt

1[Li, Zhang, and Liu, arXiv 2016]



Non-Linear Quantization

e Distribution of weights in 5th layer of VGGNet
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Non-Linear Quantization

o Distribution of weights in 15th layer of VGGNet
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— Near normal distribution

— Deeper layers tend to have smaller weights
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Non-Linear Quantization

e An intuitive perspective

linear quantizer
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Non-Linear Quantization
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Non-Linear Quantization
e LogNet
— Weights: 4-bit, Activation: 32-bit
— No scaling factor  — Hardware friendly
— Substitute MAC with Shift and Add
— Accuracy degradation: 4.9% on AlexNet without Retraining
— Accuracy degradation: 4.6% on VGG16 with Retraining

Architecture (for convolutions)(b
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![Lee, Miyashita, Chai, et al., ICASSP 2017]
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Non-Linear Quantization
e Incremental Network Quantization
— Incremental retraining on Log domain
— Weights: 5-bit, Activation: 4-bit
— Accuracy degradation: 1.16% on VGG16

1[Zhou, Yao, Guo, et al., ICLR 2017]
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Problem Formulation

Trained Model
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Quantize Weights by loga(w)
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Problem Formulation

Trained Model

—{ Quantize Weights by loga(w) )
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Low-precision Model

e Retraining is expensive!
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Problem Formulation

Trained Model
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e How to skip retraining?
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3. Proposed Quantization and Hardware Co-design



Non-uniform Quantization

e More Log Bits # Less Quantization Error

x10°

—=—Log Quantization




Non-uniform Quantization

Unable to quantize
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Proposed Non-uniform Quantization

o Non-linear Quantization with Codebook
N
’d}i = Z (bn [idxi,n]
n=1

— idx;j,n: ith segment of w;
— N codebooks

o Codebook Structure
b = 0,2*1,2*2,...,2*@3“1)}

¢ Quantize weights to codebook index idx

e Only process codebook index during inference
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Proposed Non-uniform Quantization

e Example: To quantize value 0.75
— Log domain quantization: ground(logz(0.75)) — 9=1 — (5

— Increasing bits don’t help!



Proposed Non-uniform Quantization

e Example: To quantize value 0.75
— Log domain quantization: 27°und(1082(0-79) — 9—1 — 5

— Increasing bits doesn't help!

e Reduce quantization error with N =2, B; =1,B, =2
— Codebook ¢1 = {0,271}, ¢2 = {0,271,272, 273}

¢1=10, 27"} ¢, ={0, 27", 272 273},

1,10

e Quantized value: w; =1,10=2"142"2=10.75
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Proposed Non-uniform Quantization
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Figure: Index value distribution of FC layer in VGGNet16

e Codebook index values tend to be centered within a range

e More bits are required without optimization
— 3 bits for ¢1, 4 bits for ¢ for this case
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Proposed Non-uniform Quantization

e Offset 3, to cover wider range
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Proposed Non-uniform Quantization
e Offset 3, to cover wider range

b = [0,2—1—ﬁ",2—2—ﬂ", ...,2—(23”‘1)‘ﬁ"] ,

N ¢
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— Reduce to 3 bits for ¢1, 3 bits for ¢2
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Proposed Non-uniform Quantization

MSE criterion to determine optimal offset j3,,:

=
Bn = argminf Z || b; — wy| %,
n =0

Weights in the same layer share the same offsets

Only require N offset values for a layer

e Increase quantization resolution



Efficient MAC Operation

e MAC based on shift and add

N
y:u}i*xi—i—b:Zqﬁn[idxi,n]*xi—&—b.

n=1

Codebook elements are all power of 2 or zero

Shift and add instead of bulky multiplier

e One multiplication = N shift and N — 1 addition



Efficient MAC Operation

e Normalized energy and area cost comparison for single MAC unit for

N:2731:B2i3—>(3,3)

Power | Area
Shift-add MAC 1x 1x
Fixed-point MAC | 7.3x | 14.5%




Hardware Architecture

e Huffman Coding — Lossless compression
e Two-level Systolic Array — Maximize data reuse
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Two-level Systolic Array

e 14x 14 PE array
e Row Stationary (RS) dataflow — Minimize data movement
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Dataflow of Systolic Array
1. Weights Broadcast

H
)
E
)
E

H H
2 |3
a) )
=] [
) )
ElREl

)

E

)
m

a)
m



Dataflow of Systolic Array
2. Data Input (16-bit fixed)




Dataflow of Systolic Array
3. Data Output (Activation: 16-bit fixed)
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Xo*Wi+X3*¥Wo+Xa* W3
X3*W1+Xe*Wa+Xs*Ws3




Dataflow of Systolic Array
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Processing Element

e Each PE contains 5 Cells
e Cell implements shift-add MAC operation
e 1-D systolic convolution — Higher throughput
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Dataflow of PE

e Weights stay
e Input data move systolically
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Dataflow of PE

e Weights stay
e Input data move systolically
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Dataflow of PE

e Weights stay

e Input data move systolically
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4. Results and Analysis



Test on AlexNet

e Codebook size N = 2 without Retraining

Model H Codebook ‘ Top-1/top-5 Accuracy ‘

Degradation

AlexNet

Baseline
(3,2)
(4,2)
(3,3)
(4,4)

56.55%,79.09%
41.76%/66.22%
48.36%,/72.33%
54.98%/77.89%
55.45%/78.64%

,/,
—14.79%/ — 12.87%
—~8.19%/ — 6.76%
—1.57%/ — 1.20%
—~1.10%/ — 0.45%

[t] Top-1/top-5 error are tested with single center crop.
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Test on AlexNet

e Quantization MSE comparison
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Validation on ImageNet

e Quantize pretrained AlexNet, VGGNet16, ResNet34 model from Pytorch
o Codebook size N = 2 with By = By =3

Model H Method ‘ Bit-width ‘ Degradation ‘ Retraining
Baseline 32 —-/— No
AlexNet Proposed (8,3) —-1.57%/ — 1.20% No
LogNet 5 -/ —3.70% No
Baseline 32 —/— No
VGGNet-16 Proposed (8,3) —2.23%/ - 1.95% No
Fixed-point 16 —3.58%/ — 2.49% No
Baseline 32 —/- No
ResNet-18 Prf)posed (3,3) —-1.97%/ - 1.17% No
ShiftCNN (4,4) —3.21%/ — 2.05% No
TWNs 2 —2.56%/ — 1.80% Yes

[t] Top-1/top-5 error are tested with single center crop.
[*] Degradation is taken from original papers.
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Model Compression

Normalized Model Size

[ Baseline
N Q
3 Q+Huffman

5.33x

AlexNet VGGNet-16 ResNet-34
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Implementation Results

Design Qiu2016 Zhang2016 | This work
Zyn Virtex-7 Virtex-7
Platform XC72005 | VX690t | VX690t
Clock(MHz) 150 150 150
Quantization 16-bit fixed | 16-bit fixed (3,3)
LUT 186, 251 ~ 300, 000 107995
FF 127,653 ~ 300, 000 117795
DSP 2240 2833 0
BRAM 1024 1248 1279
Throughput (GOP/s) 187.8 636.0 238.2

1[Qiu, Wang, Yao, et al., ISFPGA 2016]
2[Zhang, Fang, Zhou, et al., ICCAD 2016]
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Conclusion

e A framework to implement low-precision CNNs
— Non-uniform quantization with multiple codebooks and offset
— Retraining-free quantization approaches

— Multiplier-free shift-add convolution

o Efficient hardware architecture
— Two-level systolic to maximize data reuse
— Huffman compression to reduce memory bandwidth

— 1-D systolic PEs to obtain high throughput
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