Efficient Deep Convolutional Neural Networks

Accelerator without Multiplication and Retraining

Weihong Xu'?, Xiaohu You?, Chuan Zhang'?

1Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS)
2National Mobile Communications Research Laboratory, Southeast University, Nanjing, China

wh.xu@seu.edu.cn

April 17, 2018

Outline

1. Motivation

2. Related Work and Problem Formulation

w

. Proposed Quantization and Hardware Co-design
4. Results and Analysis

5. Conclusion

Outline

1. Motivation

Motivation

Eleaming
ii IDzprocessing
]
languag =

i@\ Q} |8

Image Segmentation

NLP

4 of 51

Convolutional Neural Networks

2
g

cat Peat
convolution + max pooling
nonlinearity
convolution + pooling layers fully connected layers Nx binary classification

e Convolution: feature extraction by convolving various filters over input
image
e Fully-connected: linear transform over input features

e Pooling and Non-linear: perform down sampling and non-linear func-
tion

5 of b1

Major Challenges

e Computation-intensive: convolution takes up over 95% of ovarall com-
plexity

— O(N?K?) complexity per image — Prohibitive complexity

— Floating point MAC is expensive —> Low energy efficiency

e Memory-intensive: FC layers contribute 90% parameters
— Densely connected networks — Millions of weights

— Massive data movement — Bandwidth limitation

Outline

2. Related Work and Problem Formulation

Low-precision Neural Networks

e Binarized Neural Networks
— Binary weights {—1, +1} with scaling factor «
— Activation: 32-bit float
— « is determined by Li-norm of weights

— Accuracy degradation: 19% on AlexNet

(1) Binarizing Weight

sgrny [w Wl =a i /B
(2) Binarizing Input)

- wlXaller=Pr-.| =

Inefficient) I
L Xs)le1=B2" ERPEE »sign(Xz)=H,
K o

sign(T)

_ N i1
Efficient ST T = ‘ ol g ! 11,11
/ k 2 11,11
k-mem . A A A sign(I)

![Rastegari, Ordonez, Redmon, et al., ECCV 2016]

Low-precision Neural Networks

e Ternary Weight Nets
— Ternary weights {—1,0,+1} with scaling factor o
— Activation: 32-bit float
— Adding zero value increases expressive abilities of weights
— Accuracy degradation: 3.7% on AlexNet

e Objective of BNNs and TWNs

— Minimize distance between full precision weights W and the ternary weights
W using scaling factor a:

o, W' = argmin ||[W — aW"|?
a, Wt

1[Li, Zhang, and Liu, arXiv 2016]

Non-Linear Quantization

e Distribution of weights in 5th layer of VGGNet

12000

10000

8000
5 L
2 6000

4000

2000

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1
Weight Value

0.15

Non-Linear Quantization

o Distribution of weights in 15th layer of VGGNet

x10*

I I 1
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
Weight Value

— Near normal distribution

— Deeper layers tend to have smaller weights

11 of b1

Non-Linear Quantization

e An intuitive perspective

linear quantizer
T T T

log,, quantizer

3000 x T 3000 —— 121
2500 - b°‘|‘”da"“’5 2500 R
2000 o 2000 i i i
1500 ! } 1500 } Y
1000 o 1000f | |
500 Lo 500 P

0 0

02 01 0 01 02 02 0 00 0102

Weight Values Weight Values

12 of 51

Non-Linear Quantization

e An intuitive perspective

linear quantizer
T T T

log,, quantizer

3000 x T 3000 —— 121
2500 = boundaries 2500 Lo
2000 i i 2000 o
1500 | o 1500 i i \
1000 Lo 1000 b
500 Lo 500 P

0 0

02 01 0 01 02 pe L L

Weight Values Weight Values
Inefficient More efficient

Non-Linear Quantization
e LogNet
— Weights: 4-bit, Activation: 32-bit
— No scaling factor — Hardware friendly
— Substitute MAC with Shift and Add
— Accuracy degradation: 4.9% on AlexNet without Retraining
— Accuracy degradation: 4.6% on VGG16 with Retraining

Architecture (for convolutions)(b

Hardware (c)

s contains 3x3 filters

previous layer

“

) o o™
o) € g e) @ g WA
input acts. of layer [output acts. of layer [+ 1

![Lee, Miyashita, Chai, et al., ICASSP 2017]

14 of 51

Non-Linear Quantization
e Incremental Network Quantization
— Incremental retraining on Log domain
— Weights: 5-bit, Activation: 4-bit
— Accuracy degradation: 1.16% on VGG16

1[Zhou, Yao, Guo, et al., ICLR 2017]

15 of 51

Problem Formulation

Trained Model

|

Quantize Weights by loga(w)

|

Restore Accuracy by Retraining

Accuracy Satisfied?

Low-precision Model

Problem Formulation

Trained Model

—{ Quantize Weights by loga(w))

|

Restore Accuracy by Retraining]4—

Accuracy Satisfied?

Low-precision Model

e Retraining is expensive!

17 of 51

Problem Formulation

Trained Model

—{ Quantize Weights by loga(w) }

Mc uracy by%)‘_

No
ccuracy Satisfied
Yes

Low-precision Model

e How to skip retraining?

Outline

3. Proposed Quantization and Hardware Co-design

Non-uniform Quantization

e More Log Bits # Less Quantization Error

x10°

—=—Log Quantization

Non-uniform Quantization

Unable to quantize

oo —— LNy No e
ol LT me N
20000 4| L 0000 1
s L oD TR
1000 ! L 10000 b e

500 ; L S0 | | Lo

?0.2 0.1 0 01 02 02 -01 0 01 02

Weight Values

Weight Values

21 of 51

Proposed Non-uniform Quantization

o Non-linear Quantization with Codebook
N
’d}i = Z (bn [idxi,n]
n=1

— idx;j,n: ith segment of w;
— N codebooks

o Codebook Structure
b = 0,2*1,2*2,...,2*@3“1)}

¢ Quantize weights to codebook index idx

e Only process codebook index during inference

22 of 51

Proposed Non-uniform Quantization

e Example: To quantize value 0.75
— Log domain quantization: ground(logz(0.75)) — 9=1 — (5

— Increasing bits don’t help!

Proposed Non-uniform Quantization

e Example: To quantize value 0.75
— Log domain quantization: 27°und(1082(0-79) — 9—1 — 5

— Increasing bits doesn't help!

e Reduce quantization error with N =2, B; =1,B, =2
— Codebook ¢1 = {0,271}, ¢2 = {0,271,272, 273}

¢1=10, 27"} ¢, ={0, 27", 272 273},

1,10

e Quantized value: w; =1,10=2"142"2=10.75

24 of 51

Proposed Non-uniform Quantization

e 9,
03 o>

0.2

Frequency

0.1

00 10 -8 -6 -4 -2 0
Index Value

Figure: Index value distribution of FC layer in VGGNet16

e Codebook index values tend to be centered within a range

e More bits are required without optimization
— 3 bits for ¢1, 4 bits for ¢ for this case

25 of 51

Proposed Non-uniform Quantization

e Offset 3, to cover wider range

Frequency

b = [0,2—1—ﬁ",2—2—‘*", ...,2—(23”—1)‘ﬁ"] ,

03 mm ¢,
0.2
0.1
O'912 -10 -8 -6 -4 -2 0
Index Value
=0 pr=2

26 of b1

Proposed Non-uniform Quantization
e Offset 3, to cover wider range

b = [0,2—1—ﬁ",2—2—ﬂ", ...,2—(23”‘1)‘ﬁ"] ,

N ¢
03 mm ®>

0.2

Frequency

0.1

0'(-)12 -10 -8 -6 -4 -2 0

Index Value

— Reduce to 3 bits for ¢1, 3 bits for ¢2

27 of 51

Proposed Non-uniform Quantization

MSE criterion to determine optimal offset j3,,:

=
Bn = argminf Z || b; — wy| %,
n =0

Weights in the same layer share the same offsets

Only require N offset values for a layer

e Increase quantization resolution

Efficient MAC Operation

e MAC based on shift and add

N
y:u}i*xi—i—b:Zqﬁn[idxi,n]*xi—&—b.

n=1

Codebook elements are all power of 2 or zero

Shift and add instead of bulky multiplier

e One multiplication = N shift and N — 1 addition

Efficient MAC Operation

e Normalized energy and area cost comparison for single MAC unit for

N:2731:B2i3—>(3,3)

Power | Area
Shift-add MAC 1x 1x
Fixed-point MAC | 7.3x | 14.5%

Hardware Architecture

e Huffman Coding — Lossless compression
e Two-level Systolic Array — Maximize data reuse

f FPGA |
| | Two-level Systolic Array " I
map
| < < -
| =1,
T] |
I E E E Filters S 5 5 I S
BB [e S S 2 LS
| : : . S S & b
. . >
[Ofmap_ < -~ ® I‘ <
| " TIT
| I
—— J

Two-level Systolic Array

e 14x 14 PE array
e Row Stationary (RS) dataflow — Minimize data movement

Ofmap
Buffer

Filter
Buffer

Dataflow of Systolic Array
1. Weights Broadcast

H
)
E
)
E

H H
2 |3
a))
=] [
))
ElREl

)

E

)
m

a)
m

Dataflow of Systolic Array
2. Data Input (16-bit fixed)

Dataflow of Systolic Array
3. Data Output (Activation: 16-bit fixed)

Xi*¥W1+X*Wo+X3*Ws
Xo*Wi+X3*¥Wo+Xa* W3
X3*W1+Xe*Wa+Xs*Ws3

Dataflow of Systolic Array

Xy
Xz
X3

W,

X4

W,

Xs

W3

PE PE PE
PE PE PE
PE PE PE

X Wi+ Xo*Wo+X3* W3

Xo*Wi+X3*Wo+Xa* W3

X3*Wi+Xa*Wo+Xs*Ws

36 of 51

Processing Element

e Each PE contains 5 Cells
e Cell implements shift-add MAC operation
e 1-D systolic convolution — Higher throughput

-Ir > Xi+1
Xi-1 =1 Xi

v
Yi =

N

-’

A
~ P
: 5| [Ifmap
Xin M Reg [— > Xout
ez Cell] | _] Cell
Yin > Reg —>] M Yout
o e 3 *
Processing Element

Dataflow of PE

e Weights stay
e Input data move systolically

A 4

|HH

Dataflow of PE

e Weights stay
e Input data move systolically

A 4

s B HE

|EH

Dataflow of PE

e Weights stay

e Input data move systolically

A 4

—»{ Lel

|HH

| c]b]a]

Outline

4. Results and Analysis

Test on AlexNet

e Codebook size N = 2 without Retraining

Model H Codebook ‘ Top-1/top-5 Accuracy ‘

Degradation

AlexNet

Baseline
(3,2)
(4,2)
(3,3)
(4,4)

56.55%,79.09%
41.76%/66.22%
48.36%,/72.33%
54.98%/77.89%
55.45%/78.64%

,/,
—14.79%/ — 12.87%
—~8.19%/ — 6.76%
—1.57%/ — 1.20%
—~1.10%/ — 0.45%

[t] Top-1/top-5 error are tested with single center crop.

42 of 51

Test on AlexNet

e Quantization MSE comparison

x10°

—=—Log Quantization

——Proposed

Validation on ImageNet

e Quantize pretrained AlexNet, VGGNet16, ResNet34 model from Pytorch
o Codebook size N = 2 with By = By =3

Model H Method ‘ Bit-width ‘ Degradation ‘ Retraining
Baseline 32 —-/— No
AlexNet Proposed (8,3) —-1.57%/ — 1.20% No
LogNet 5 -/ —3.70% No
Baseline 32 —/— No
VGGNet-16 Proposed (8,3) —2.23%/ - 1.95% No
Fixed-point 16 —3.58%/ — 2.49% No
Baseline 32 —/- No
ResNet-18 Prf)posed (3,3) —-1.97%/ - 1.17% No
ShiftCNN (4,4) —3.21%/ — 2.05% No
TWNs 2 —2.56%/ — 1.80% Yes

[t] Top-1/top-5 error are tested with single center crop.
[*] Degradation is taken from original papers.

44 of 51

Model Compression

Normalized Model Size

[Baseline
N Q
3 Q+Huffman

5.33x

AlexNet VGGNet-16 ResNet-34

45 of 51

Implementation Results

Design Qiu2016 Zhang2016 | This work
Zyn Virtex-7 Virtex-7
Platform XC72005 | VX690t | VX690t
Clock(MHz) 150 150 150
Quantization 16-bit fixed | 16-bit fixed (3,3)
LUT 186, 251 ~ 300, 000 107995
FF 127,653 ~ 300, 000 117795
DSP 2240 2833 0
BRAM 1024 1248 1279
Throughput (GOP/s) 187.8 636.0 238.2

1[Qiu, Wang, Yao, et al., ISFPGA 2016]
2[Zhang, Fang, Zhou, et al., ICCAD 2016]

Outline

5. Conclusion

Conclusion

e A framework to implement low-precision CNNs
— Non-uniform quantization with multiple codebooks and offset
— Retraining-free quantization approaches

— Multiplier-free shift-add convolution

o Efficient hardware architecture
— Two-level systolic to maximize data reuse
— Huffman compression to reduce memory bandwidth

— 1-D systolic PEs to obtain high throughput

Reference

1.

M. Rastegari, V. Ordonez, J. Redmon, et al., “Xnor-net: Imagenet classi-
fication using binary convolutional neural networks,” in ECCV, 2016

F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016

E. H. Lee, D. Miyashita, E. Chai, et al.,, “Lognet: Energy-efficient neural
networks using logarithmic computation,” in /CASSP, 2017

A. Zhou, A. Yao, Y. Guo, et al., “Incremental network quantization: To-
wards lossless cnns with low-precision weights,” in /ICLR, 2017

. J. Qiu, J. Wang, S. Yao, et al., “Going deeper with embedded fpga platform

for convolutional neural network,” in ISFPGA, 2016

. C. Zhang, Z. Fang, P. Zhou, et al., “Caffeine: Towards uniformed represen-

tation and acceleration for deep convolutional neural networks,” in ICCAD,
2016

. D. A. Gudovskiy and L. Rigazio, “Shiftcnn: Generalized low-precision ar-

chitecture for inference of convolutional neural networks,” arXiv preprint
arXiv:1706.02393, 2017

Thanks for Your Attention!

	Motivation
	Related Work and Problem Formulation
	Proposed Quantization and Hardware Co-design
	Results and Analysis
	Conclusion

