
- We tackle the hyperspectral super-resolution problem using matrix factorization and first-order optimization.
- Frank-Wolfe updates.

- **Spectral sensors:** capture scenes in multiple spectral bands
- specifications:

Sensor	AVIRIS	HYPERION	HJ-1A
Band number	224	242	128
Wavelength range	0.4 - $2.5 \mu \mathrm{m}$	0.4 - 2.5µm	0.45 - $0.95 \mu \mathrm{m}$
Spatial resolution	20 m	30 m	80 m

 an HS image has low-spatial and high-spectral resolution; - Multispectral (MS) sensors

• specifications:

Sensor	QuickBird	WorldView-2
Band number	4	8
Wavelength range	0.4 - $0.9 \mu \mathrm{m}$	0.4 - 1μ m
Spatial resolution	2.16 m	1.85 m

• an MS image has high-spatial and low-spectral resolution. - Super-resolution (SR), high spatial-spectral resolution, sensors? Not exist

- **HSR:** recover an SR image from an HS-MS image pair.
- **Applications:** high-spatial-resolution mapping of, e.g., minerals, urban surface materials, plant species, etc.

• Signal model:

- $X \in \mathbb{R}^{M imes L}$ is spectral-spatial matrix of the SR image;

- $oldsymbol{V}_M$ and $oldsymbol{V}_M$ are noise.

HI, BCD! HYBRID INEXACT BLOCK COORDINATE DESCENT FOR HYPERSPECTRAL SUPER-RESOLUTION

[†]Ruiyuan Wu, [†]Chun-Hei Chan, [‡]Hoi-To Wai, [†]Wing-Kin Ma, and ^{*}Xiao Fu [†]Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China [‡]School of ECEE, Arizona State Univ., AZ, USA, * School of EECS, Oregon State Univ., OR, USA

* Supported in part by the Hong Kong RGC GRF under Project ID 14205414, and in part by the U.S. National Science Foundation under project NSF ECCS-1608961

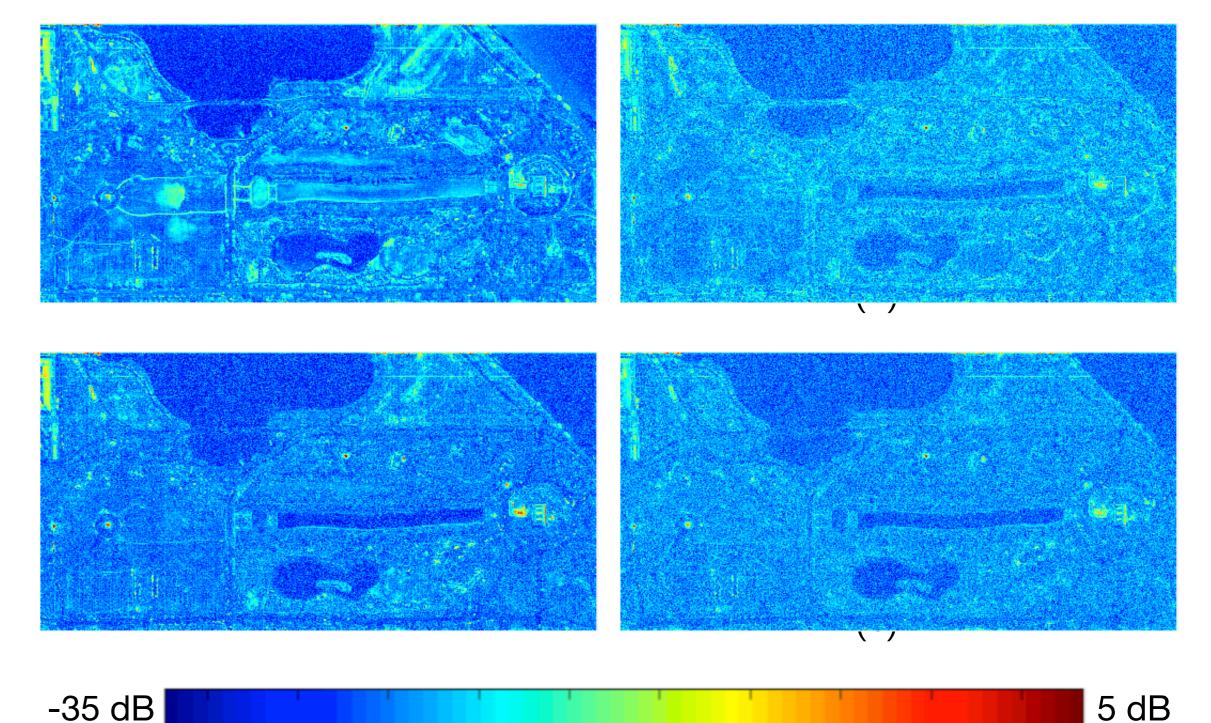
Key Points

• We devise a novel inexact block coordinate descent method which employs hybrid proximal gradient and

- Per-iteration complexities: S-update $\mathcal{O}(LN(M + \log(N)) + N \cdot \operatorname{nnz}(G) + N^2M)$ $\mathcal{O}(LNM + N \cdot \operatorname{nnz}(\boldsymbol{G}) + N^2L)$ A-update • Scheme II: inexact BCD by Frank-Wolfe (FW) $\boldsymbol{S}^{k+1} = \boldsymbol{S}^k + \alpha_{S,k} (\boldsymbol{P}_S^k - \boldsymbol{S}^k)$ $\boldsymbol{A}^{k+1} = \boldsymbol{A}^k + \alpha_{A,k} (\boldsymbol{P}^k_A - \boldsymbol{A}^k)$ - It is projection free; - P_S^k and P_A^k are the FW directions of S and A, resp. $\circ \boldsymbol{P}_{S}^{k} = \arg\min_{\boldsymbol{Z}\in\mathcal{S}} \langle \nabla_{\boldsymbol{S}} f(\boldsymbol{A}^{k},\boldsymbol{S}^{k}),\boldsymbol{Z} \rangle$ $\circ \boldsymbol{P}_{A}^{k} = \arg\min_{\boldsymbol{Z} \in \mathcal{A}} \langle \nabla_{\boldsymbol{A}} f(\boldsymbol{A}^{k}, \boldsymbol{S}^{k+1}), \boldsymbol{Z} \rangle$ - $\alpha_{S,k}$ and $\alpha_{A,k}$ are the step sizes; - An instance of CBCG [3] (roughly speaking). - Per-iteration complexities: **S-update** $|\mathcal{O}(LNM + N \cdot \operatorname{nnz}(\boldsymbol{G}))|$ A-update $O(LNM + N \cdot nnz(G))$ • Scheme III: hybrid inexact BCD (HiBCD) $oldsymbol{S}^{k+1} = extsf{UD}_S(oldsymbol{A}^k,oldsymbol{S}^k)$ $oldsymbol{A}^{k+1} = extsf{UD}_A(oldsymbol{A}^k,oldsymbol{S}^{k+1})$ - UD_S and UD_A can be either the PG or FW updates, e.g., \circ PG update for A, FW update for S; - convergence result: Theorem 1 The HiBCD scheme guarantees convergence to a stationary point of the SMF for HSR. Also, its convergence rate, measured by means of the FW gap, is $\mathcal{O}(1/\sqrt{k})$. • this result applies to a wide class of optimization problems. Simulations • Algorithms under comparison - PGiBCD: PG update for both A and S; - FWiBCD: FW update for both A and S; - HiBCD: PG update for A, FW update for S; - FUMI: the state-of-the-art exact BCD algorithm. • Synthetic data experiment - Settings: • N = 9, $L = 100^2$, M = 224, $L_H = 25^2$, $M_M = 6$; $\circ A$ is from the USGS digital spectral library; $\circ S$ is from an abundance map of the AVIRIS Cuprite dataset; $\circ G$ corresponds to 11×11 Gaussian point spreading with variance $\sigma^2 = 1.7^2$, followed by downsampling with ratio 4; $\circ F$ corresponds to the LANDSAT specification; - Averaged performance over 100 independent trials SNR Method Runtime (sec.) PSNR (dB) Iterations 8.31 ± 1.75 214.44 ± 51.59 FUMI 16.39 ± 0.41 20 PGiBCD 3.41 ± 0.43 503.04 ± 62.81 $|17.68\pm0.51|$ $|\mathsf{FWiBCD}| \ \mathbf{1.01} \pm \mathbf{0.09}$ $|\mathbf{164.30} \pm \mathbf{13.55}| | 17.59 \pm 0.49|$ 1.59 ± 0.18 272.40 ± 32.08 HiBCD 17.66 ± 0.51 15.80 ± 4.48 $435.70 \pm 125.92 \mid 22.72 \pm 0.81$ FUMI PGiBCD 7.01 ± 0.96 1057.14 ± 140.57 **24.33** \pm **0.89** 30 $|237.12 \pm 34.17| 24.19 \pm 0.85|$ FWiBCD 1.44 ± 0.20 434.34 ± 75.09 | 24.27 ± 0.87 HiBCD 2.51 ± 043 566.60 ± 181.69 32.41 ± 0.98 19.45 ± 5.89 FUMI PGiBCD 14.78 ± 3.25 2235.18 ± 496.21 **33.02** \pm **1.08** 40 **FWiBCD** 3.11 ± 0.53 515.12 ± 87.38 32.61 ± 1.04 5.29 ± 1.07 | 932.14 ± 191.53 | 32.72 ± 1.05 HiBCD

• Semi-real data experiment

- Settings:


• N = 30, $L = 520 \times 260$, M = 191, $L_H = 130 \times 65$, $M_M = 6$; $\circ X$ is cropped from the HYDICE Washington DC dataset;

- Averaged performance over 50 trials (SNR: 40dB)

Method	Runtime (sec.)	Iterations	PSNR (dB)
FUMI	1162.53 ± 235.89	950.23 ± 194.31	41.24 ± 0.53
PGiBCD	560.64 ± 18.84	2115.23 ± 71.34	46.88 ± 0.04
FWiBCD	$\textbf{304.73} \pm \textbf{9.71}$	1610.47 ± 51.01	41.34 ± 0.12
HiBCD	310.52 ± 8.35	1689.94 ± 46.20	44.25 ± 0.09

- an instance of the mean square error maps of the algorithms

MSE maps of (a) PGiBCD, (b) FWiBCD, (c) HiBCD and (d) FUMI


Conclusion

- A hybrid inexact BCD scheme was proposed for HSR.
- Computational and convergence issues were dealt with.
- Numerical results showed promising runtime performance.

Reference

[1] Q. Wei, J. Bioucas-Dias, N. Dobigeon, J.-Y. Tourneret, M. Chen, and S. Godsill, "Multiband image fusion based on spectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7236-7249, 2016.

- [2] M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.
- [3] A. Beck, E. Pauwels, and S. Sabach, "The cyclic block conditional gradient method for convex optimization problems," SIAM J. Optim., vol. 25, no. 4, pp. 2024–2049, 2015.

