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Key Points

•We tackle the hyperspectral super-resolution problem using matrix factorization and first-order
optimization.
•We devise a novel inexact block coordinate descent method which employs hybrid proximal gradient and
Frank-Wolfe updates.
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model real scenario

Hyperspectral Super-Resolution (HSR)
• Spectral sensors: capture scenes in multiple spectral bands
- Hyperspectral (HS) sensors
◦ specifications:

Sensor AVIRIS HYPERION HJ-1A
Band number 224 242 128
Wavelength range 0.4 - 2.5µm 0.4 - 2.5µm 0.45-0.95µm
Spatial resolution 20 m 30 m 80 m

◦ an HS image has low-spatial and high-spectral resolution;
- Multispectral (MS) sensors
◦ specifications:

Sensor QuickBird WorldView-2
Band number 4 8
Wavelength range 0.4 - 0.9µm 0.4 - 1µm
Spatial resolution 2.16 m 1.85 m

◦ an MS image has high-spatial and low-spectral resolution.
- Super-resolution (SR), high spatial-spectral resolution, sensors? Not
exist.

•HSR: recover an SR image from an HS-MS image pair.
•Applications: high-spatial-resolution mapping of, e.g., minerals, urban
surface materials, plant species, etc.

Problem Statement
• Signal model:

MS image model: YM = FX + VM
HS image model: YH = XG + VH

-X ∈ RM×L is spectral-spatial matrix of the SR image;
-YH ∈ RM×LH is the spectral-spatial matrix of the HS image;
-YM ∈ RMM×L is the spectral-spatial matrix of the MS image;
-F ∈ RMM×M is the spectral degradation matrix;
-G ∈ RL×LH is the spatial degradation matrix;
-VM and VM are noise.

•Assumption: the SR image has low rank, i.e., X = AS

-N � min{M,L};
-A and S follow the linear mixture model
◦ it is widely-used in remote sensing;
◦A ∈ A, where A = [0, 1]M×N ;
◦S ∈ S, where S = {S = [s1, . . . , sL]|si ≥ 0,1Tsi = 1,∀ i}.

• Structured matrix factorization (SMF) formulation:

min
A∈A,S∈S

f (A,S) := 1
2
‖YM − FAS‖2

F + 1
2
‖YH −ASG‖2

F

-Challenge: the number of unknowns is very large
◦L, the pixel number, may range from thousands to millions;

-Aim: develop a computational efficient optimization scheme.
Exact Block Coordinate Descent (BCD)

• Exact BCD works by recursively solving
Sk+1 = arg min

S∈S
f (Ak,S)

Ak+1 = arg min
A∈A

f (A,Sk+1)
- It guarantees convergence to a stationary point.
• FUMI [1] is the state-of-the-art exact BCD-based algorithm
- It uses customize-designed, ADMM-based, solvers for A and S.
• Limitation: computationally expensive when data sizes are large.

Proposed Inexact BCD Scheme
• Scheme I: inexact BCD by proximal gradient (PG)

Sk+1 = ΠS(Sk − γS,k∇Sf (Ak,Sk))
Ak+1 = ΠA(Ak − γA,k∇Af (Ak,Sk+1))

- ΠS(·) and ΠA(·) are the projections onto S and A, resp.
◦ΠS(·) is a column-wise unit simplex projection;
◦ΠA(·) = max{0,min{1, ·}} (elementwise operations);

- γS,k and γA,k are the step sizes;
- An instance of BSUM [2];

• - Per-iteration complexities:
S-update O(LN(M + log(N)) + N · nnz(G) + N 2M)
A-update O(LNM + N · nnz(G) + N 2L)

• Scheme II: inexact BCD by Frank-Wolfe (FW)
Sk+1 = Sk + αS,k(P k

S − Sk)
Ak+1 = Ak + αA,k(P k

A −Ak)
- It is projection free;
-P k

S and P k
A are the FW directions of S and A, resp.

◦P k
S = arg minZ∈S〈∇Sf (Ak,Sk),Z〉

◦P k
A = arg minZ∈A〈∇Af (Ak,Sk+1),Z〉

-αS,k and αA,k are the step sizes;
- An instance of CBCG [3] (roughly speaking).
- Per-iteration complexities:

S-update O(LNM + N · nnz(G))
A-update O(LNM + N · nnz(G))

• Scheme III: hybrid inexact BCD (HiBCD)
Sk+1 = UDS(Ak,Sk)
Ak+1 = UDA(Ak,Sk+1)

- UDS and UDA can be either the PG or FW updates, e.g.,
◦ PG update for A, FW update for S;

- convergence result:

Theorem 1
The HiBCD scheme guarantees convergence to a stationary point of
the SMF for HSR. Also, its convergence rate, measured by means of
the FW gap, is O(1/

√
k).

◦ this result applies to a wide class of optimization problems.
Simulations

•Algorithms under comparison
- PGiBCD: PG update for both A and S;
- FWiBCD: FW update for both A and S;
- HiBCD: PG update for A, FW update for S;
- FUMI: the state-of-the-art exact BCD algorithm.
• Synthetic data experiment
- Settings:
◦N = 9, L = 1002, M = 224, LH = 252, MM = 6;
◦A is from the USGS digital spectral library;
◦S is from an abundance map of the AVIRIS Cuprite dataset;
◦G corresponds to 11× 11 Gaussian point spreading with variance
σ2 = 1.72, followed by downsampling with ratio 4;
◦F corresponds to the LANDSAT specification;

- Averaged performance over 100 independent trials
SNR Method Runtime (sec.) Iterations PSNR (dB)

20
FUMI 8.31± 1.75 214.44± 51.59 16.39± 0.41

PGiBCD 3.41± 0.43 503.04± 62.81 17.68± 0.51
FWiBCD 1.01± 0.09 164.30± 13.55 17.59± 0.49
HiBCD 1.59± 0.18 272.40± 32.08 17.66± 0.51

30
FUMI 15.80± 4.48 435.70± 125.92 22.72± 0.81

PGiBCD 7.01± 0.96 1057.14± 140.57 24.33± 0.89
FWiBCD 1.44± 0.20 237.12± 34.17 24.19± 0.85
HiBCD 2.51± 043 434.34± 75.09 24.27± 0.87

40
FUMI 19.45± 5.89 566.60± 181.69 32.41± 0.98

PGiBCD 14.78± 3.25 2235.18± 496.21 33.02± 1.08
FWiBCD 3.11± 0.53 515.12± 87.38 32.61± 1.04
HiBCD 5.29± 1.07 932.14± 191.53 32.72± 1.05

• Semi-real data experiment
- Settings:
◦N = 30, L = 520× 260, M = 191, LH = 130× 65, MM = 6;
◦X is cropped from the HYDICE Washington DC dataset;

- Averaged performance over 50 trials (SNR: 40dB)

Method Runtime (sec.) Iterations PSNR (dB)
FUMI 1162.53± 235.89 950.23± 194.31 41.24± 0.53

PGiBCD 560.64± 18.84 2115.23± 71.34 46.88± 0.04
FWiBCD 304.73± 9.71 1610.47± 51.01 41.34± 0.12
HiBCD 310.52± 8.35 1689.94± 46.20 44.25± 0.09

- an instance of the mean square error maps of the algorithms

(a) (b)

(c) (d)

5 dB-35 dB

MSE maps of (a) PGiBCD, (b) FWiBCD, (c) HiBCD and (d) FUMI

Conclusion
•A hybrid inexact BCD scheme was proposed for HSR.
• Computational and convergence issues were dealt with.
•Numerical results showed promising runtime performance.
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