# POLYPHONIC MUSIC SEQUENCE TRANSDUCTION WITH METER-CONSTRAINED LSTM NETWORKS

Adrien Ycart, Emmanouil Benetos Centre for Digital Music, Queen Mary University of London a.ycart@qmul.ac.uk / emmanouil.benetos@qmul.ac.uk



Typical AMT Workflow:

### Focus of this work

## **5. Evaluation Metrics**

- Two types of metrics
  - Frame metrics: piano-rolls compared frame-by-frame
  - Note metrics: piano-rolls first converted to lists of notes, then compared
  - In both cases we compute: Precision, Recall, F-measure
- Three settings:





#### 

- System compared against:
  - Baseline: median-filtering and thresholding posteriograms
  - HMM: Each pitch is modeled as a 2 state on-off hidden Markov model
- Results:
  - Outperforms both simpler models on frame metrics
  - Outperformed by baseline on note metrics, due to overfragmentation of notes
  - In every case, better performance in note-to-time setting than in time-based

## 6. Experiments



From top to bottom: posteriogram, LSTM output, ground truth, all in time-based setting

### Our aim:

Use a simple LSTM network for time-pitch posteriogram post-processing and compare 10ms (time-based) and 16<sup>th</sup>-note (note-based) time-steps

MAPS dataset - Emiya et al.
(2010)

- Aligned MIDI and audio files, played on virtual pianos and on Disklavier
- Rhythm annotations obtained from Piano-midi.de MIDI files
  - Symbolic alignment between Piano-midi.de and MAPS MIDI files
  - Obtain a correspondence table: time position of each 16<sup>th</sup>-note



Annotations available at: http://c4dm.eecs.qmul.ac.uk/ycart/icassp18.html

4. Model

|               | Time-based setting |                   |                   | Note-based setting |                   |                   | Note-to-time setting |                   |                   |                   |
|---------------|--------------------|-------------------|-------------------|--------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|
|               |                    | $\mathcal{F}(\%)$ | $\mathcal{P}(\%)$ | $\mathcal{R}(\%)$  | $\mathcal{F}(\%)$ | $\mathcal{P}(\%)$ | $\mathcal{R}(\%)$    | $\mathcal{F}(\%)$ | $\mathcal{P}(\%)$ | $\mathcal{R}(\%)$ |
| Frame metrics | Baseline           | 63.8              | 71.0              | 61.6               | 69.4              | 70.5              | 71.3                 | 65.2              | 64.8              | 69.9              |
|               | HMM                | 55.2              | 74.1              | 48.1               | 59.5              | 76.5              | 52.4                 | 56.3              | 70.5              | 51.4              |
|               | LSTM               | 66.3              | 67.0              | 67.8               | 70.2              | 70.8              | 71.8                 | 67.1              | 65.9              | 71.0              |
| Note metrics  | Baseline           | 65.3              | 63.2              | 70.6               | 72.0              | 69.3              | 76.5                 | 66.3              | 66.6              | 67.7              |
|               | HMM                | 61.8              | 86.2              | 50.9               | 64.9              | 85.9              | 54.9                 | 58.5              | 81.9              | 48.0              |
|               | LSTM               | 57.2              | 51.1              | 69.3               | 65.8              | 60.5              | 73.9                 | 62.2              | 59.6              | 67.0              |

### 7. Discussion

- Two-fold improvement with note-based time steps:
  - Which one is most important?
- Durations are quantised
- Network better models temporal dependencies
- Compare note-to-time and time-based with quantised durations
  - Equivalent results in both cases: improvement only comes from quantisation
- Downside of note-based time steps:
  - Require beat tracking (rhythm annotations are considered given in this study)
  - Cannot represent extra-metrical notes: trills, ornaments, tuplets...
- Future directions:

#### Acoustic Model

- From Benetos and Weyde (2015)
- Based on Probabilistic Latent Component Analysis
- Operates with 10ms time-step: outputs have to be downsampled to 16<sup>th</sup> note steps

### Transduction Model

- 128 hidden nodes, learning rate=0.01
- Adam optimiser on cross-entropy
- Output thresholded (using validation data)



- Replicate experiments with RNN-RBM architecture: a more complex architecture could better model temporal dependencies
- Use a beat-tracking algorithm instead of ground-truth beat annotations

**N. Boulanger-Lewandowski, P. Vincent, and Y. Bengio**. "Modeling Temporal Dependencies in High Dimensional Sequences: Application to Polyphonic Music Generation and Transcription." 29th International Conference on Machine Learning, 2012.

**S. Sigtia, E. Benetos, and S. Dixon**. "An end-to-end neural network for polyphonic piano music transcription". *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 24(5):927–939, May 2016.

**R. Kelz, M. Dorfer, F. Korzeniowski, S. Bock, A. Arzt, and G. Widmer,** "On the Potential of Simple Framewise Approaches to Piano Transcription," 17<sup>th</sup> International Conference on Music Information Retrieval (ISMIR), 2016.

**F. Korzeniowski and G. Widmer.** "On the Futility of Learning Complex Frame-Level Language Models for Chord Recognition". *In AES International Conference on Semantic Audio*, 2017.

**A. Ycart and E. Benetos**, "A study on LSTM networks for polyphonic music sequence modelling," in *18th International Society for Music Information Retrieval Conference (ISMIR)*, 2017.

**E. Benetos and T. Weyde**. "An efficient temporally constrained probabilistic model for multiple instrument music transcription". In 16<sup>th</sup> International Society for Music Information Retrieval Conference (ISMIR), 2015.



