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Automatic Music  
Transcription 

(AMT) 

Typical AMT Workflow: 

Music		
recording	

Frame-wise	F0	
estimates	

(posteriogram)	
Binary	

piano-roll	

Acoustic model 
Extracts features 

from audio 

Language model 
Uses prior knowledge 

to create a “meaningful” output 

4.	Model	

3.	Dataset	
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Problem:		
§  Time-step	too	small	

compared	to	typical	
duration	of	a	note	

§  Time-step	doesn’t	adapt	
to	tempo	of	a	piece	

!	Data	Representation	 !	Network	Architecture	
§  88 x T binary piano-roll 
§  No difference between onset and 
continuation  
§  Two different time-steps: 

§  Time-based: 10ms 
§  Note-based: a sixteenth note 

!	Acoustic	Model	

!	Transduction	Model	

§  From Benetos and Weyde (2015)  
§  Based on Probabilistic Latent Component 
Analysis  
§  Operates with 10ms time-step: outputs 
have to be downsampled to 16th note steps 

5.	Evaluation	Metrics	
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7.	Discussion	

6.	Experiments	

§  Two-fold improvement with note-based time steps: 
§  Durations are quantised 
§  Network better models temporal dependencies 

§ Compare note-to-time and time-based with quantised durations  
§  Equivalent results in both cases: improvement only comes from quantisation 

§ Downside of note-based time steps: 
§  Require beat tracking (rhythm annotations are considered given in this study) 
§  Cannot represent extra-metrical notes: trills, ornaments, tuplets… 

§  Future directions: 
§  Replicate experiments with RNN-RBM architecture: a more complex architecture 

could better model temporal dependencies 
§  Use a beat-tracking algorithm instead of ground-truth beat annotations 

Focus of this work 

Complex Neural Networks… … are not so efficient  
when used inappropriately! 

§  Boulanger-Lewandowski et al. 
(2012): 

§  RNN-RBM architecture for 
sequence modelling 

§  Time-step: 16th-note 

§  Sigtia et al. (2015):  
§  RNN-RBM integrated with a neural 

acoustic model 
§  Time-step: 32ms 

§  Kelz et al. (2016): 
§  Outperforms Sigtia et al. without 

complex language model 

§  Korzeniowski & Widmer (2017), 
Ycart & Benetos (2017): 

§  When using a too short time-
step, self-transitions predominate 
à LSTMs only have a 
smoothing effect 

Our	aim:		
Use	a	simple	LSTM	network	for	time-pitch	posteriogram	post-processing	
and	compare	10ms	(time-based)	and	16th-note	(note-based)	time-steps		
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§ MAPS dataset - Emiya et al. 
(2010) 

§  Aligned MIDI and audio files, 
played on virtual pianos and 
on Disklavier 

§ Rhythm annotations obtained 
from Piano-midi.de MIDI files 

§  Symbolic alignment between 
Piano-midi.de and MAPS 
MIDI files 

§  Obtain a correspondence 
table: time position of each 
16th-note  
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§  128 hidden nodes, learning rate=0.01 
§  Adam optimiser on cross-entropy 
§  Output thresholded (using validation data) 

§  Two types of metrics 
§  Frame metrics: piano-rolls compared frame-by-frame 
§  Note metrics: piano-rolls first converted to lists of notes, then compared 
§  In both cases we compute: Precision, Recall, F-measure 

§  Three settings: 

§  System compared against: 
§  Baseline: median-filtering 

and thresholding 
posteriograms 

§  HMM: Each pitch is modeled 
as a 2 state on-off hidden 
Markov model 

§ Results: 
§  Outperforms both simpler 

models on frame metrics 
§  Outperformed by baseline on 

note metrics, due to over-
fragmentation of notes 

§  In every case, better 
performance in note-to-time 
setting than in time-based From top to bottom: posteriogram, LSTM output, 

ground truth, all in time-based setting 

Which one is most important ?	
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Up-	
sampling	

§ Annotations available at: http://c4dm.eecs.qmul.ac.uk/ycart/icassp18.html 


