Unlimited Sampling of Sparse Signals Recovery of Low-pass Filtered Spikes from Modulo-Folded Samples

Ayush Bhandari[†] Felix Krahmer[‡] Ramesh Raskar[†]

[†]Massachusetts Institute of Technology • [‡] Technical University of Munich

Poster presented by: Chris Gilliam and Beth Jelfs

Summary

Key Takeaways

- Shannon's Sampling Theorem is fundamental to the fields of signa communications and information theory.
- A practical problem in realizing this theorem is that analog-to-digit (ADCs) are finite dynamic range devices while the sampling theore assumptions on the dynamic range.
- Recently, we introduced the concept of **Unlimited Sampling** [1].
- This unique approach circumvents the clipping or saturation pro ventional analog-to-digital converters (ADCs).
- We do so by considering a radically different ADC architecture, t **ADC** [2], which computes modulo or folded samples.
- The Unlimited Sampling Theorem proves that a bandlimited s perfectly recovered from modulo samples.

The sampling rate is purely dependent on the signal bandwidth an dent of the ADC threshold.

• By capitalizing on the Unlimited Sampling Theorem, in this work, problem of recovery of a continuous-time sparse signal from lowmodulo samples.

Setup for Sparse Signals

We are interested in recovery of low-pass filtered spikes from module For this purpose, we will be working with the model:

$$g(t) = \sum_{k=0}^{K-1} c_k \psi(t - t_k) \equiv (s_K * \psi)(t)$$

where ψ is a bandlimited function and s_K is a continuous time, K-s signal

$$s_K(t) = \sum_{m \in \mathbb{Z}} \sum_{k=0}^{K-1} c_k \delta(t - t_k - m\tau), \quad t_{k+1} > t$$

Problem Formulation

Let ψ be a given π -bandlimited, low-pass filter and s_K be the defined in (3). Furthermore, let $\{y_n\}_{n=0}^{N-1}$ be the modulo samples in (2). What are conditions for perfect recovery of s_K from $\{y_n\}$

Our basic strategy for recovering s_K from y_n can be summarized as

 $y_n \xrightarrow{\text{Unfolding}} g_n \xrightarrow{\text{Sparse Recovery}} s_K(t)$.

This approach relies on extracting unfolded, contiguous sample seq 2K+1 from which $s_K(t)$ is estimated using high-resolution frequen

	Unlimited Sampling of Bandlin
	• Let $T>0$ be the sampling rate and $g(t)$ be a π -
al processing,	• In Unlimited Sampling framework, we sample g us
tal converters	$y_n = \operatorname{mod}_{\lambda} \left(g\left(nT \right) \right), n \in \mathbb{Z}, T > 0$
rem makes no	• Such folded samples are acquired using a version of Even if $a(t) \gg \lambda$, $u_m \in [0, \lambda)$.
	This is not the case with conventional ADC which
oblem in con-	Unlimited Sampling Theorem [1]
the Self-reset signal can be	Let $g(t)$ be a π -bandlimited function and $\{y_n\}$ g(t) with sampling rate T . Then, a sufficient cor $\{y_n\}_n$ up to additive multiples of 2λ is,
nd is indepen-	$0 < T\pi e \le \frac{1}{2}.$
we study the -pass filtered,	In [1], the Unlimited Sampling theorem is complement which is based on the principle of consistent reconstr
	A Sparse Sampling Th
o/folded samples.	 A Sparse Sampling Th Fundamentally different from the bandlimited case , we will be working with finite number of samples
o/folded samples. (2)	 A Sparse Sampling The Second state of the second state of
o/folded samples. (2) sparse, $ au$ -periodic	 A Sparse Sampling Th Fundamentally different from the bandlimited case, we will be working with finite number of samples Of course we expect that N will be larger than 2H should still be finite. For this purpose, we prove the following Local Rest
o/folded samples. (2) sparse, τ -periodic	 A Sparse Sampling Th Fundamentally different from the bandlimited case, we will be working with finite number of samples Of course we expect that N will be larger than 2H should still be finite. For this purpose, we prove the following Local Restruction Theorem
o/folded samples. (2) sparse, $ au$ -periodic $k \cdot$ (3)	 A Sparse Sampling Th Fundamentally different from the bandlimited case, we will be working with finite number of samples Of course we expect that N will be larger than 2H should still be finite. For this purpose, we prove the following Local Restruction Theorem Let g be a π-bandlimited function with g ∞ modulo samples of y(t) with sampling rate T. Theorem the following the function of the following restrict the following restric
o/folded samples. (2) sparse, τ -periodic τ_k . (3) sparse signal sparse signal $p_{n=0}^{N-1}$?	A Sparse Sampling Th • Fundamentally different from the bandlimited case, we will be working with finite number of samples • Of course we expect that N will be larger than 2R should still be finite. • For this purpose, we prove the following Local Re Let g be a π -bandlimited function with $ g _{\infty}$ modulo samples of $y(t)$ with sampling rate T. Therefore, recovery of N' contiguous samples of g from the of 2λ is that $T \leq \frac{1}{2\pi e}$ and $N \geq N'$
o/folded samples. (2) sparse, τ -periodic $k \cdot$ (3) sparse signal s of g defined $\lambda \}_{n=0}^{N-1}$? 5,	A Sparse Sampling Th • Fundamentally different from the bandlimited case , we will be working with finite number of samples • Of course we expect that N will be larger than 2H should still be finite. • For this purpose, we prove the following Local Re Let g be a π -bandlimited function with $ g _{\infty}$ modulo samples of $y(t)$ with sampling rate T. The recovery of N' contiguous samples of g from the of 2λ is that $T \leq \frac{1}{2\pi e}$ and $N \geq N' - \frac{1}{2K}$ Noting that $ g _{\infty} = s_K * \psi _{\infty} \leq \psi _{\infty} s_K (0)$ N' = 2K + 1 in the above theorem, we obtain the of s_K from N modulo samples.

nited Functions

-bandlimited function.

sing non-linear principle:

of the Self-reset ADC [2].

clips g.

 n_n be the modulo samples of ondition for recovery of g from

(1)

nted with a constructed algorithm ruction.

leorem

[1], for sparse signal recovery (3)

K + 1 but the number of samples

econstruction Theorem.

 $\leq eta_g$ and $\{y_n\}_{n=0}^{N-1}$ be the Then a sufficient condition for e y_n (up to additive multiples

(4)

Young's Inequality) and by using sufficiency condition for recovery

Proc. of SampTA, 2017. pixel level ADC," Electron. Lett., 2003.

Unlimited Sampling in Action Usual ADC compared with self-reset ADC. (a) Whenever the input signal f_{ln} voltage exceeds a certain threshold λ , the output signal f_{Out} in any conventional ADC saturates to λ and this results in clipping. In contrast, whenever $|f_{in}| > \lambda$, the self-reset ADC folds f_{in} such that f_{Out} is always in the range $[-\lambda, \lambda]$. In this way, the self-reset configuration circumvents clipping but introduces discontinuities. (b1) Self-reset ADC Image (b2) Reset Count Map -10 -8 -6 -4 (b4) Optical Microscope (b3) **Recovered Image**

(b) Images obtained with prototype self-reset ADC. (b1) Image obtained with a self-reset ADC shows folded amplitudes. (b2) For each pixel, the "reset count map" shows the number of times the image amplitude has undergone folding. (b3) Unfolded image based on reset count map. (b4) Image obtained using an optical microscope.

Local Reconstruction: Example

Sparse signal recovery via local reconstruction of modulo samples with $\beta_q = 3.2511$ and $\lambda = 0.25$. (a) We plot Ksparse signal $s_K(t)$ with K = 3 and $\tau = 10$, the low-pass filtered signal $g = s_K * \psi$ where $\psi(t) = \operatorname{sinc}(t)$ as well as modulo samples y_n with T = 0.0485. (b) Using our algorithm, we estimate unfolded samples \tilde{g}_n from N = 99 modulo samples of y_n . For this purpose L = 3. The reconstruction is observed to be exact (upto machine precision). Given 2K + 1 of \tilde{g}_n , the spikes are estimated using standard sparse recovery methods [3].

References Continued

2002.

Contact: ayush@mit.edu

[3] M. Vetterli, P. Marziliano, and T. Blu, "Sampling signals with finite rate of innovation," IEEE Trans. Signal Process.,