Unlimited Sampling of Sparse Signals
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Unlimited Sampling in Action

o Let T’ be the sampling rate and ¢g(t) be a w-bandlimited function.
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O practical problem in realizing this theorem is that analog-to-digital converters : : : f f vV \/
. . . . ; e Such folded samples are acquired using a version of the Self-reset ADC [2]. Out Out L od (o)
(ADCs) are finite dynamic range devices while the sampling theorem makes no Vsl ADG Salfireest ADG (g
assumptions on the dynamic range Even if \ \ Un = mody (9(nT))  (Up toa constant offset
' ® Ltven | t .
g ( ) >> ’ yn E [O ! ) Usual ADC compared with self-reset ADC. (a) Whenever the input signal fi, voltage exceeds a
. - - - . i i . . i certain threshold A, the output signal fo,: in any conventional ADC saturates to A and this results
e Recently, we introduced the concept of Unlimited Sampling [1]. This is not the case with conventional ADC which clips g. in clipping. In contrast, whonover |f > A, the selxeset ADC folds fiy such that Jou. i always Unlimited Sampling Architecture
in the range [—A, A]. In this way, the self-reset configuration circumvents clipping but introduces
discontinuities.
This unique approach circumvents the clipping or saturation problem in con-
Ventional analOg—tO—digital Converters (ADCS) ,,(bl) Self-reset ADC Image (b2) Reset Count Map g: Bandlimited Function yk: Wrapped Samples ~k: Estimated Sampled of g

Unlimited Sampling Theorem [1]
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e We do so by considering a radically different ADC architecture, the Self-reset i — gy(z)
ADC [2], which computes modulo or folded samples. Let g(t) be a m-bandlimited function and {y, }, be the modulo samples of 06 — %

e The Unlimited Sampling Theorem proves that a bandlimited signal can be g(t) with sampling rate I". Then, a sufticient condition for recovery of g from E
perfectly recovered from modulo samples. {Yn }n up to additive multiples of 2 is, g
The sampling rate is purely dependent on the signal bandwidth and is indepen- 1
dent of the ADC threshold. 0 <Tme= . (1) Si:
] o . ] . . . (b3) Recovered Image (b4) Optical Microscope
e By capitalizing on the Unlimited Sampling Theorem, in this work, we study the
problem of recovery of a continuous-time sparse signal from low-pass filtered, o _ _ _ _ () Images cbtained with prosorype scleses ADC. (51) Tmage obtined with . st ADC b
mOduIO Samples In [1], the Unllmlted Sampllng theorem |S Com plemented Wlth a COﬂStrUCted algOl’Ithm fm(:;z alpiitjiph;;uzz;gozle?cl:lz?xfg.I}?;),Un?olzzscieinizggbzig 0?1 ;):sit csuﬁlii;;.o(bi?lfiagz Maximum signal amplitude excelz:ds-the threshold A by a factor 20 times.

obtained using an optical microscope.

which is based on the principle of consistent reconstruction.

Setup for Sparse Signals A Sparse Sampling Theorem .
Local Reconstruction:
We are interested in recovery of low-pass filtered spikes from modulo/folded samples. ° Fundar_nentally di_fferen.t fro_m_ the bandlimited case [1], for sparse signal recovery (3)
For this purpose, we will be working with the model: , we will be working with finite number of samples. @) . 10 ’ o 3
K—1 e Of course we expect that N will be larger than 2K + 1 but the number of samples _ z 1 ° ?g/'("t)
g(t) = Z ckp (t —tg) = (sx *x ) (t) (2) should still be finite. = : sk (1)
Al e For this purpose, we prove the following Local Reconstruction Theorem. %Ei Op=—~—— A - - = - R
where 1) is a bandlimited function and sx is a continuous time, K—sparse, 7-periodic g
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K—1 Local Reconstruction Theorem ° ° : ° ° T?rﬂe L
sk (t)= D D> cud(t—ty—mT), tri1 > ti. (3) W y ® — NI gn
meZ k=0 Let g be a m—bandlimited function with ||g||cc < B4 and {yn}gz_ol be the S 2} !
modulo samples of y(t) with sampling rate T'. Then a sufficient condition for o 1F t
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Problem Formulation recovery of N’ contiguous samples of g from the y,, (up to additive multiples £ 0f : b
N y of 2)\) is that 7T 3
. .. . . 2
Let ¢ be a given m—bandlimited, low-pass filter and sx be the sparse signal T < 1 4 N> N . 769 A ————— ML
defined in (3). Furthermore, let {y, }, 5 be the modulo samples of g defined — 27e — A\ Time
. L N—1,
" (2) Ml IS R e S O perfect recovery o .- Fiel {yn}n:() . Sparse signal recovery via local reconstruction of modulo samples with B4 = 3.2511 and A = 0.25. (a) We plot K-
) ] _ Noting that ||g||oo — ||5K * ¢||oo S ||¢||oo ||3K || (Young’s Inequality) and by using sparse signal s g (t) with K = 3 and 7 = 10, the low-pass filtered signal g = s * 1 where ¢ (t) = sinc(t)
Our basic strategy for recovering sy from yn can be summarized as, N’ = 2K + 1 in the above theorem, we obtain the sufficiency condition for recovery %W_e” as modulo samples yr, with 7' = 0.0485. (b) Using our algorithm, we estimate unfolded samples g, from
— 99 modulo samples of y, . For this purpose L. = 3. The reconstruction is observed to be exact (upto machine
Unfolding Sparse Recovery (t) of SK from N modulo samples. precision). Given 2K -+ 1 of gp,, the spikes are estimated using standard sparse recovery methods [3].
Un, > Jn > SK :

References References Continued

This approach relies on extracting unfolded, contiguous sample sequence g,, of size

2K + 1 from which S (t) is estimated using high—resolution frequency estimation [3] [1] A. Bhandari, F. Krahmer and R. Raskar, “On Unlimited Sampling,” Proc. of SampTA, 2017. [3] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Trans. Signal Process.,

[2] J. Rhee and Y. Joo, “Wide dynamic range CMOS image sensor with pixel level ADC,” Electron. Lett., 2003. 2002.



