Unsupervised Domain Adaptation via Domain Adversarial Training for Speaker Recognition

Qing Wang^{1,2}, Wei Rao², Sining Sun¹, Lei Xie¹, Eng Siong Chng^{2,3}, Haizhou Li⁴

¹ School of Computer Science, Northwestern Polytechnical University, Xian, China
² Temasek Laboratories@NTU, Nanyang Technological University, Singapore
³ School of Computer Science and Engineering, Nanyang Technological University, Singapore
⁴ Department of Electrical and Computer Engineering, National University of Singapore, Singapore

18 April, 2018

Outline

- Introduction
- Proposed Method
- Experimental Setup and Result
- Conclusions

- Conventional approaches of speaker recognition usually assume that training and evaluation data share the same probability distributions or the same feature space.
- However, in the real-world application, there is always a mismatch between the training and evaluation datasets, which leads to the **domain mismatch** in speaker recognition.
- **Domain adaptation** is seen as a solution to alleviate the domain mismatch,

Introduction Previous work

- Domain adaptation for speaker recognition
 - \Box Training dataset \longrightarrow Source domain
 - $\Box \quad \text{Evaluation dataset} \quad \longrightarrow \quad \text{Target domain}$
- According to the availability of labels in target domain:
 - Supervised domain adaptation
 - Unsupervised domain adaptation
 - Use clustering techniques to estimate speaker label of unlabeled target domain data.
 - Select the unlabeled target and source domain data to estimate a compensation model to compensate the domain mismatch.
 - Learn the domain-invariant space or map the source domain data into target domain space and use the mapped source domain data with its speaker label to train LDA or PLDA.
 - Autoencoder based Domain Adaptation (AEDA): adapt source domain data to target domain.

- Apply Domain Adversarial Training (DAT) [2] to solve the domain mismatch problem in speaker recognition.
- Project the source domain data and target domain data into the common domain.
- Learn the domain-invariant and speaker-discriminative speech representations.

[1] Yaroslav Ganin et al. "Domain-Adversarial Training of Neural Networks". In: Journal of Machine Learning Research 17.1 (2015), pp. 2096–2030.

[2] Sining Sun et al. "An unsupervised deep domain adaptation approach for robust speech recognition," Neurocomputing, pp. 79–87, 2017.

Method DAT in Speaker Recognition

Domain Adversarial Training (DAT)

Method

- Gradient Reversal Layer (GRL)
 - ensures the feature distributions over the two domains are similar so that we can get domain-invariant and speakerdiscriminative features.
 - multiplies by a certain **negative** hyper parameter during the backpropagation, used to trade off two losses.
- Loss Function

$$E(\Theta_{f}, \Theta_{y}, \Theta_{d}) = \sum_{\substack{i=1,...N\\\mathbf{d}_{i}=[1,0]}} L_{y}(G_{y}(G_{f}(\mathbf{x}_{i}; \Theta_{f}); \Theta_{y}), \mathbf{y}_{i}) - \lambda \sum_{i=1,...N} L_{d}(G_{d}(G_{f}(\mathbf{x}_{i}; \Theta_{f}); \Theta_{d}), \mathbf{d}_{i})$$
$$= \sum_{\substack{i=1,...N\\\mathbf{d}_{i}=[1,0]}} L_{y}^{i}(\Theta_{f}, \Theta_{y}) - \lambda \sum_{i=1,...N} L_{d}^{i}(\Theta_{f}, \Theta_{d})$$

Method

- Domain Adversarial Neural Network (DANN): we call the model trained by DAT method as DANN
 - Input: enroll data i-vector (i_e) and test i-vector (i_t)
 - Extract new vectors $\hat{i_e}$, $\hat{i_t}$ from the hidden layer of the feature extractor sub-network from DANN
 - Domain-invariant and speaker-discriminative speech representations

Dataset:

□ 2013 domain adaptation challenge dataset (DAC 13) i-vector Dataset

- □ Source domain data: SWB
- □ Target domain data: SRE, SRE-1phn
- □ Test data: SRE10 telephone data

	SWB	SRE	SRE-1phn
#spks	3114	3790	3787
#calls	33039	36470	25640
#calls/spkrs	10.6	9.6	6.77
#phone_num/spkr	3.8	2.8	1.0

i-vector Statistic in DAC 13 i-vector Dataset

- Baseline Experiments:
 - System1: domain match
 - System2: domain mismatch
 - System3: domain match & insufficient channel information
 - System4: domain mismatch

System#	Pre-processing	PLDA	EER%	DCF10	DCF08
1	SRE	SRE	2.33	0.402	0.235
2	SRE	SWB	5.65	0.632	0.427
3	SRE-1phn	SRE-1phn	9.35	0.724	0.520
4	SRE-1phn	SWB	5.66	0.633	0.427

- DAT method Experiments:
 - Training data of DANN:
 - SWB i-vectors with speaker labels (used to train the whole network)
 - SRE-1phn i-vectors without speaker label (used to train the feature extractor and domain classifier)
 - Baseline systems:
 - System 4: PLDA → SWB (Source domain data)

System#	Adaptation Methods	EER%	DCF10	DCF08
4	-	5.66	0.633	0.427
5	DAT	3.73	0.541	0.335

DAT vs. state-of-the-art unsupervised domain adaptation methods

Conclusions

- We have proposed to perform domain adversarial training for speaker recognition.
- DAT overcomes the domain mismatch problem by projecting the source domain and target domain data into the same subspace.
- By DAT approach, we can obtain domain-invariant and speaker-discriminative speech representations.
- In future work, we will explore the effectiveness of DAT on NIST SRE 16 database and compare the difference between DAT and the generative adversarial network.

Reference

- [3] Suwon Shon et al. "Autoencoder based Domain Adaptation for Speaker Recognition under Insufficient Channel Information". In: INTERSPEECH. 2017, pp. 1014–1018.
- [4] Daniel Garcia-Romero et al. "Unsupervised domain adaptation for i-vector speaker recognition". In: Proceedings of Odyssey: The Speaker and Language Recognition Workshop. 2014.
- [5] Ahilan Kanagasundaram et al. "Improving out-domain PLDA speaker verification using unsupervised inter-dataset variability compensation approach". In: ICASSP. 2015.
- [6] Md Hafizur Rahman et al. "Dataset-Invariant Covariance Normalization for Out-domain PLDA Speaker Verification". In: INTERSPEECH. 2015, pp. 1017– 1021.
- [7] Oleg Kudashev et al. "A speaker recognition system for the sitw challenge," in INTERSPEECH, 2016, pp. 833–837.

Thank you!

