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Listen, Attend & Spell - LAS 1,

e Attention-based sequence-to-sequence

model Graphemes
e Jointly learns "acoustic" and "language”
model components Decoder
: . . 2x1024 LSTM
e Attention mechanism summarizes relevant
encoder features to predict next label m

e Previous label prediction is fed back into
the decoder to predict the current one Encoder
5x1024 LSTM
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Multi-Dialect ASR

Conventional Systems
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In conventional systems, languages/dialects,
are handled with individual AMs, PMs and LMs.
Upscaling is becoming challenging.
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Conventional Co-training.
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A single model for all.



Multi-Dialect LAS

e Modeling Simplicity e Joint Optimization
e Data Sharing e Infrastructure Simplification
o among dialects and model components o asingle model for all

Table: Resources required for building each system.

Conventional Seq2Seq
data
phoneme
lexicon y N data
text normalization
LM
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Multi-Dialect LAS



Dialect as Output Targets

e Multi-Task Learning: Joint Language ID (LID) and ASR
o LID first, then ASR
M '<sos> <en-gb> helloUworld<eos>
m LID errors may affect ASR performance

o ASR first, then LID
M <sos>hellolUworldc<en-gb> <eos>"

m  ASR prediction is not dependent on LID prediction, not suffering from LID
errors
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Dialect as Input Features

<sos> hellowor1ld <eos>

e Passing the dialect information
as additional features

T

: [previous context vector,
. previous label prediction]

components variations

encoders — acoustic

lexicon and

decoders
language
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Dialect Information as Cluster Coefficients

e Cluster Adaptive Training (CAT) [1]

coefficients Encoder
o more flexible model
architectures
o larger capacity in variation
modeling
o butincreased model
parameters
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Experimental Evaluations



Task

e 7 English dialects: us (america), IN (India), GB (Britain), ZA (South Africa), AU
(Australia), NG (Nigeria & Ghana), KE (Kenya)

Training data distribution (Total 35.1M) 20 Training grapheme distribution (Total 1.0B)
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% unbalanced dialect data % unbalanced target classes
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LAS Co-training Baselines

Dialect us IN GB ZA AU NG KE
dialect-ind. 10.6 18.3 12.9 12.7 12.8 33.4 19.2
dialect-dep. 9.7 16.2 12.7 11.0 12.1 33.4 19.0

* dialect specific fine-tuning still wins

% simply pooling the data is missing certain dialect specific variations
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LAS With Dialect as Output Targets

Dialect us IN GB ZA AU NG KE
Baseline
9.7 16.2 12.7 11.0 12.1 33.4 19.0
(dialect-dep.)
LID first 9.9 16.6 12.3 11.6 12.2 33.6 18.7
ASR first 9.4 16.5 11.6 11.0 11.9 32.0 17.9
% LID error affects ASR Example target sequence
% ASR first is better LID first <sos> <en-gb> he 1 1 oUwor 1ld<eos>

ASRfirst <sos> he 1 1 olUwor 1ld<en-gb> <eos>
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LAS With Dialect as

Dialect us IN GB ZA AU NG KE
Baseline (dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0
1-hot 9.6 16.4 11.8 10.6 10.7 31.6 18.1

encoder
emb. 9.6 16.7 12.0 10.6 10.8 32.5 18.5
1-hot 9.4 16.2 11.3 10.8 10.9 32.8 18.0

decoder
emb. 9.4 16.2 11.2 10.6 11.1 32.9 18.0
both 1-hot 9.1 15.7 11.5 10.0 10.1 31.3 17.4

% dialect 1-hot and embedding (emb.) performs similarly

* feeding dialect to both encoder and decoder gives the largest gains
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LAS With Dialect as Input Features

Figure: Feeding different dialect vectors (rows) to the LAS
encoder and decoder on different test sets (columns).

us IN GB ZA AU NG KE us IN GB ZA AU NG KE
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(a) Encoder (b) Decoder

% encoder is more sensitive to wrong dialects — large acoustic variations

* for low-resource dialects (NG, KE), the model learns to ignore the dialect information
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LAS With Dialect as Input Features

The dialect vector does both AM and LM adaptation

Table: The number of color/colour occurrences in hypotheses on the en-gb test data.

: : color colour
dialect vector . encoder | decoder (US) (GB)
X : X : X 1 22
___________________________________ X e v
| |
<en-gb>:[0,1,0,0,0,0,0], ¢ | «x 19 4
___________________________________ oYX e A
<en-gb>:[0,1,0,0,0,0,0]. x | 0 25
| |
<en-us>:[1,0,0,0,0,0,0' x ' 24 0

% dialect vector helps encoder to normalize accent variations

% dialect vector helps decoder to learn dialect-specific lexicons
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LAS With Dialect as

Dialect Us IN GB ZA AU NG KE
Baseline (dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0
WERSEECER) g 96 164 118 106 107 316  18.
(encoder)
1-hot 99 170 124 110 116 325 183
CAT coeff.
emb. 94 164 117 106 106 329 181

% dialect as CAT coefficients is much better than as inputs

% but with large model params increase (160K vs. 3M)
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Final Multi-Dialect LAS



Final Multi-Dialect LAS

<sos> helloworld<en-gb> <eos>

o output targets:
m multi-task with ASR
first
o input features:
m feeding dialect to
both encoder and
decoder

Attention

. [previous context vector,

. previous label prediction]
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Final Multi-Dialect LAS

Dialect usS IN GB ZA AU NG KE

Baseline

9.7 16.2 12.7 11.0 12.1 33.4 19.0
(dialect-dep.)

output targets 94 165 116 110 119 320 179

(ASR first)
input features
9.1 15.7 11.5 10.0 10.1 31.3 17.4
(both)
final 9.1 16.0 11.4 9.9 10.3 31.4 17.5

% small gains when combining input and output

* the final system outperforms the dialect-dependent models by 3.1~16.5% relatively
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e We investigated building with
. additional dialect information:

@® as additional
# as extra Input Vectors

@® as Cluster Adaptation Training coefficients

& We justified:

® the of building a single LAS model to capture dialect
variations
‘ dialect information boosts the single model to dialect

dependent models.



