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Introduction

¢ Unmanned aerial vehicle (UAV) communication systems facilitate fast and
flexible deployment due to their excellent maneuverability.
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e Existing UAV communication systems cannot guarantee stable and sustain-
able communication services due to the limited energy storage.

e Solar powered UAV has potential to
tainable communications.

realize perpetual flight and enable sus-

e There is a fundamental tradeotf between harvesting solar energy and im-
proving communication performance.

e Main contribution: Suboptimal algorithm design for joint 3-D positioning,
power and subcarrier allocation of solar powered multicarrier UAV systems.
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Fig. 1. A solar powered multicarrier UAV communication system with one UAV transmitter

and K = 2 downlink users.

A. Channel Model
Received signal at DL user k on subcarrier i is
given by
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e r = (x,v,2): 3-D coordinates of the UAV

e r;, = (T, Yk, 0) : 3-D coordinates of user k
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e p! : transmit power to user k on subcarrier i
e 1! : DL channel to user k on subcarrier i

e d! : DL transmitted data symbol

e o: path loss parameter

e n! ~ CN(0,07): AWGN at DL users

B. Solar Energy Harvesting
The atmospheric transmittance at altitude z
can be empirically approximated as follows:

o(z) = a—Be /7. (2)

e o : the maximum value of the atmospheric
transmittance

e 3 : the extinction coefficient of the atmo-
sphere

e 0 : the scale height of the earth

The attenuation of solar light passing through
a cloud can be modeled as:
Sp(dcloud) _ e—BCdCIOUd .

(3)

Simulation Results

e (. > 0: the absorption coefficient of clouds,
modeling optical characteristics

o d°°ud: the distance that the solar light prop-
agates through the cloud

Therefore, the electrical output power of the
solar panels at altitude z is modeled as:

Psolar(z)
nSGe(z)p(0), 2> Luyp
= {15Gp(2)(Lup—2), Liow <2< Ly
nSGp(2)p(Lup—Liow), 2< Liow
A — Be ?/9, 22> Lyp
= S M(2) — BC1elPe=1/9)2 L1 <2< Lyp
ACy — BCye= 2/, 2 < Liow

o A, B, (4, (5 are constants
o M(z) = AC,eP<?

e 7): the energy harvesting efficiency
e S5 : the area of the solar panels

e (5 : the average solar radiation on earth

e L,,and L.y, : the altitudes of the upper and
lower boundaries of the cloud

C2: pi >0,Vi, k,

Optimization Problem Formulation
Ne K it
maximize h .10 (1 | il )
2.2 skloes (14
Ny K
s.t. ClI: >:>:S}L€p}&€—|—PUAV < PSOlar(Z)7
F . .
C3: ) > sipk < Paas
1=1 k=1

Maximization of the system sum throughput in each time slot:
SkoPgot 1=1 k=1
i=1 k=1
C5: st 40,1}, Vi, k,

C4: <min S < S <max s
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o Hi = p|ht|*/o; and st € {0, 1} is the binary subcarrier indicator
e Pyav : the power required for maintaining the operation of the UAV
o P.x : the maximum transmit power at the UAV

Optimization Problem Solution
A. Handling of Binary Subcarrier Indicator

Define p!. = s p and absorb the binary subcarrier indicator into the objective function:

e K S
max1m1ze ZZIO&( | T Ir= rk” > (5)
i=1k=1 oe? Lok i 1
- Nr K - Nr K
st. C1: Y Y By + Puav <P (z), C2: 5,20, Vi k, C3: > Y P < Puax, C4,
1=1k=1 1=1k=1

where T |I2 Zm i pt. represents the multiuser interference at user k from the K — 1
co-channel users.

Theorem 1 The optimal subcarrier assignment strateqy for maximizing the system sum
throughput in (5) assigns each subcarrier to the user with the best channel gain and no sub-
carrier is shared by multiple users.

B. Handling of Quadratic Path Loss Term

Introduce an auxiliary variable 6:
Ny K

- H;.p;

maximize ZZlogZ (1 - —— ke k ) (6)

Pl i k= 2 ke D + O
S.t. C/i—(/fi,C4, C7: HI‘ — I'kH2 < Qk
Rewrite the problem (6) as a difference of convex (D.C.) programming problem:
NF K NF K
minimize — YY" log ( Z Hiph, +0k) = (=D Y logy ( Z Hip,, + 0k ) )
1=1 k=1 1=1 k=1
- N Ne K |
st. C2,C3,C4,C7, C1: Y » P + Puav < PP (), (7)
i=1k=1

and define G(p, 0) = — 217 4 logy (0 Hih, + 0 ).
D. Successive Convex Approximation

Then, for any given p"/) and ), we can obtain a lower bound for (7) by solving the
following optimization problem:

Nr K K
minimize > 3 loga( Y Hifl + 1) — G(p.0, 5,0 ®
p.r,0 i=1 k=1 m—1
- Ny K
s.t. C2,C3,C4,C7, C1: >N Bi+ Puav < PP (2),
1=1k=1
where G(p,0,p),00)) = G(p),09))+V;G(p.0)(p—pY))+ VeG(P,0)(0 —0Y)) and

S018“1"(2) are the global underestimations of G(p, 8) and P*°'#*(z), respectively.
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Fig. 2. Average system sum throughput (bits/s/Hz) versus the maximum transmit power of the UAV (dBm),
Prax, for different resource allocation schemes and K = 3 users.
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Fig. 3. Average system sum throughput (bits/s/Hz) versus the number of users for different resource allocation

schemes with Pyax =40 dBm and S = 1 m? solar panels.
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