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Motivation

Practical radio systems need to set link parameters in stochastic 

radio channels.
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Radio Baseband

Radio channels vary with time and over frequency.

Bit-Interleaved coded modulation (BICM) adds controlled

redundancy to source data.

Orthogonal frequency division multiplexing (OFDM) splits the

radio channel into several orthogonal “subcarriers”.
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Transmission Unit: Radio Frames 

Each transmission unit, “frame”, spans several OFDM 

symbols and subcarriers.

Channel state characterized by per-subcarrier signal to  

interference and noise ratio vector, 𝜸. 

𝜸 is assumed constant over a frame.
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Radio Link Model

5



Frame Error Probability (FEP)

The frame error probability (FEP) distribution is:

𝑃𝐸𝑘|Γ 𝑒𝑘 𝜸; 𝜽) = 𝜌𝑘
𝑒𝑘 1 − 𝜌𝑘

1−𝑒𝑘

𝜌𝑘 = 𝑓𝑘(𝜸, 𝜽𝑘)

𝜸 is distributed according to the channel fading profile.

𝑒𝑘: 𝐸𝑘 ∼ Bern(𝑓𝑘(𝜸, 𝜽)) for some unknown 𝑓𝑘.

𝜽 is the deterministic model parameter vector.

We need to estimate 𝜌𝑘 to select the optimal transmission 
configuration e.g., that maximizes the throughput.
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Traditional approach

Compress the state vector to an ”effective” scalar value

𝜌𝑘 = 𝑓𝑘 𝜸, 𝜽 ≈ 𝑔𝑘(𝛾𝑘,eff, 𝛽)

Simplified problem: estimate a suitably parameterized 𝑔𝑘.

However, compression leads to loss of information.
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Effective Exponential SINR

A common effective SINR formulation is

𝛾eff
AWGN = −𝛽𝑘 ෍

𝑝=1

𝑃

𝑒
−
𝛾𝑝
𝛽𝑘 , 𝜸 = 𝛾1, … , 𝛾𝑃 ,

known as the Exponential Effective SINR metric (EESM). 

Then 𝜌𝑘 ≈ 𝑔𝑘
AWGN(𝛾𝑘,eff) is read from simulation-based LUTs.

The parameters 𝛽𝑘 can determined through data-fitting over 

some training data.
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Machine learning approach

Directly learn the high-dimensional mapping 𝜌𝑘 = 𝑓𝑘(𝜸, 𝜽𝑘)

A learning-based approach has been studied using k-Nearest 

neighbors (kNN) for the same problem1.

kNN does not provide any insights into the optimality of the 

learned mapping.

Neural networks are an attractive tool for parameterizing 

high-dimensional models.
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Our approach: Neural networks

Maximum likelihood estimation of neural network parameters 

approximates the posterior conditional FEPs1,2.

For a large number of i.i.d. samples,

𝐶 ෡𝜽
𝑁→∞

𝐸 ln 𝑃 𝐸𝑘 𝚪; ෡𝜽

= 𝐸 ln
𝑃(𝐸𝑘|𝚪; ෡𝜽)

𝑃(𝐸𝑘|𝚪; 𝜽)
+ 𝐸 ln 𝑃(𝐸𝑘|𝚪; 𝜽)

Minimizes the cross entropy loss between network outputs 

and frame error events

𝐾 parallel binary classification problems.
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Training phases

Inputs:   𝜸𝒏 for 𝑛 = 1,… ,𝑁 frame realizations.

Targets: 𝐞𝑛 containing error events for each transmission 

configuration.
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Results: Simulation setup
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LTE-like radio link chain with ideal channel estimation.

Select the link configuration to maximize expected throughput 

in each frame,

𝑘opt = argmax
𝑘

𝑇𝑘(1 − ො𝜌𝑘)



Results: Performance
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Improvement in the 

FEP prediction



Conclusions

Neural networks can model posterior probabilities in highly 

complex models.

Proof of concept that link throughput can be improved over 

traditional compression-based approaches.

Further, nonlinear effects e.g. related to transmit/receive 

impairments may also be learnt from data.
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Thank you!
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