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Motivation ERICSSON

Practical radio systems need to set link parameters in stochastic
radio channels.
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Radio Baseband ERICSSON

Radio channels vary with time and over frequency.

Bit-Interleaved coded modulation (BICM) adds controlled
redundancy to source data.

Orthogonal frequency division multiplexing (OFDM) splits the
radio channel into several orthogonal “subcarriers”.
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Transmission Unit: Radio Frames ERICSSON

Each transmission unit, “frame”, spans several OFDM
symbols and subcarriers.

Channel state characterized by per-subcarrier signal to
iInterference and noise ratio vector, y.

y Is assumed constant over a frame.
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Radio Link Model ERICSSON
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Frame Error Probability (FEP) ERICSSON

The frame error probability (FEP) distribution is:
Per(exly; 0) = pp (1 — pp)t ek

Pr = fx(¥, 0x)

y is distributed according to the channel fading profile.
ex: Ex ~ Bern(fi(y, 8)) for some unknown f.
0 is the deterministic model parameter vector.

We need to estimate p,, to select the optimal transmission
configuration e.g., that maximizes the throughput.
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Traditional approach ERICSSON

Compress the state vector to an “effective” scalar value
Pk = [t (¥, 0) = gk (Viefr: B)

Simplified problem: estimate a suitably parameterized g;,.

However, compression leads to loss of information.




Effective Exponential SINR ERICSSON

A common effective SINR formulation is
AWGN $ -1
Yeff — _:Bk z e P ) Y = [ylr "'in]r

p=1

known as the Exponential Effective SINR metric (EESM).

Then py = gV (v etr) is read from simulation-based LUTs.

The parameters S, can determined through data-fitting over
some training data.
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Machine learning approach ERICSSON

Directly learn the high-dimensional mapping py = fx (v, 0%)

A learning-based approach has been studied using k-Nearest
neighbors (kNN) for the same problem?.

KNN does not provide any insights into the optimality of the
learned mapping.

Neural networks are an attractive tool for parameterizing
high-dimensional models.

9
1. R. C. Daniels, C. M. Caramanis, and R. W. Heath (2010), “Adaptation in Convolutionally Coded MIMO-OFDM Wireless Systems
Through Supervised Learning and SNR Ordering,”
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Our approach: Neural networks ERICSSON

Maximum likelihood estimation of neural network parameters
approximates the posterior conditional FEPs?!~.

For a large number of i.i.d. samples,

N—>oo

€(8) — E{ln P(E|r;0 )}
=E{1nP(Ek| ) )
P(E|T; 6)

} + E{In P(E,|T; )}

Minimizes the cross entropy loss between network outputs
and frame error events

K parallel binary classification problems.

ish (1990), “A probabilistic approach to the understanding and training of neural network classifiers”.
. Richard and R. P. Lippmann (1991), “Neural Network Classifiers Estimate Bayesian a Posteriori Probabilities”.
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Training phases ERICSSON
Inputs: y™" forn =1, ..., N frame realizations.

Targets: e™ containing error events for each transmission
configuration.
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ERICSSON

Results: Simulation setup

LTE-like radio link chain with ideal channel estimation.

Select the link configuration to maximize expected throughput

In each frame,
kOPt = argmax T (1 = py)

TABLE I
SIMULATION PARAMETERS
Simulation Parameter Value
Channel Model EPA
. . .
Carrier Frequency 2 x 10Y Hz NEURAL NETWORK LAYOUT
FFT Size 1024 T - O D -
Subcarrier Spacing 15 x 10° Hz ayer utput Dimensions
Frame Duration 1073 s Input P
Number of Frame OFDM Symbols 12 Dense + RelLU P
Number of Used Subcarriers 600 Encoder + RelLU 10
Modulation QPSK Dense + RelLU K
1(\.‘111311_11e11 E‘O(ilng t Ti‘;go Dropout K, drop probability = 0.2
ominal Code Rate . i
. +
Effective Code Rates 0.0, 0.02...,0.32] Output + Sigmoid K
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Conclusions ERICSSON

Neural networks can model posterior probabilities in highly
complex models.

Proof of concept that link throughput can be improved over
traditional compression-based approaches.

Further, nonlinear effects e.g. related to transmit/receive
Impairments may also be learnt from data.
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