An Improved DOA Estimator Based On Partial Relaxation Approach Minh Trinh Hoang, Mats Viberg and Marius Pesavento

TECHNISCHE UNIVERSITÄT DARMSTADT

Communication Systems Group Darmstadt University of Technology Darmstadt, Germany

CHALMERS

Department of Electrical Engineering Chalmers University of Technology Gothenburg, Sweden

Motivation

- Wide application of DOA estimation
- Multiple families of DOA estimators:
 - Maximum likelihood estimators
 - Subspace-based estimators
 - ▶ ...
- Proposal of a DOA estimator under the Partial Relaxation approach
 - Closely related to conventional DOA estimators
 - Efficient implementation for updating eigenvalues

Table of Contents

Motivation

Signal Model

Partial Relaxation Approach

Computational Aspects

Simulation Results

Conclusions and Outlook

Signal Model

Multiple Snapshots Model

$$\mathbf{X} = \mathbf{A}(\boldsymbol{\theta})\mathbf{S} + \mathbf{N}$$

- T : Number of available snapshots
- $\mathbf{X} \in \mathbb{C}^{M \times T}$: Received signal matrix
- $\mathbf{S} \in \mathbb{C}^{N \times T}$: Source signal matrix
- ▶ $\mathbf{N} \in \mathbb{C}^{M \times T}$: Sensor noise matrix

►
$$\mathbf{A}(\boldsymbol{\theta}) = [\mathbf{a}(\theta_1), ..., \mathbf{a}(\theta_N)] \in \mathbb{C}^{M \times N}$$
: Steering matrix

Array Manifold

•

$$\mathcal{A}_{N} = \left\{ \mathbf{A} \in \mathbb{C}^{M \times N} | \mathbf{A} = [\mathbf{a}(\vartheta_{1}), \dots, \mathbf{a}(\vartheta_{N})] \text{ with } \mathbf{0} \leq \vartheta_{1} < \dots < \vartheta_{N} < \mathbf{180}^{\circ} \right\}$$

Signal Model

Covariance Matrix

$$\mathbf{R} = \mathbf{A}\mathbf{R}_s\mathbf{A}^H + \sigma_n^2\mathbf{I}_M$$

- ► **R** = $\mathbb{E} \left\{ \mathbf{x}(t)\mathbf{x}(t)^{H} \right\} \in \mathbb{C}^{M \times M}$: Covariance matrix of the received signal
- ► $\mathbf{R}_s = \mathbb{E}\left\{\mathbf{s}(t)\mathbf{s}(t)^H\right\} \in \mathbb{C}^{N \times N}$: Covariance matrix of the transmitted signal
- σ_n^2 : Noise power at the sensors

Sample Covariance Matrix

$$\hat{\mathbf{R}} = \frac{1}{T} \mathbf{X} \mathbf{X}^{H} = \hat{\mathbf{U}}_{s} \hat{\mathbf{\Lambda}}_{s} \hat{\mathbf{U}}_{s}^{H} + \hat{\mathbf{U}}_{n} \hat{\mathbf{\Lambda}}_{n} \hat{\mathbf{U}}_{n}^{H}$$

- Signal subspace spanned by $\hat{\mathbf{U}}_s$
- N largest eigenvalues {λ₁,..., λ_N}
 of are contained in Â_s
- Noise subspace spanned by $\hat{\mathbf{U}}_n$

•
$$(M - N)$$
 smallest eigenvalues $\{\hat{\lambda}_{N+1}, \dots, \hat{\lambda}_M\}$ of $\hat{\mathbf{R}}$ are contained in $\hat{\mathbf{\Lambda}}_n$

Table of Contents

Motivation

Signal Model

Partial Relaxation Approach

Computational Aspects

Simulation Results

Conclusions and Outlook

Partial Relaxation Approach Revision of Conventional DOA Estimators

General Formulation

$$\left\{ \hat{\mathbf{A}} \right\} = \underset{\mathbf{A}\in\mathcal{A}_{N}}{\operatorname{arg\,min}} f(\mathbf{A})$$

Remarks

- ► *A_N*: Highly structured and non-convex set
- $f(\cdot)$: Generally non-convex function with multiple local minima
- Highly computational cost to obtain the global minimum

Example: Deterministic Maximum Likelihood (DML) Estimator

$$\left\{ \hat{\mathbf{A}}_{\mathsf{DML}} \right\} = \underset{\mathbf{A} \in \mathcal{A}_{N}}{\operatorname{arg\,min}} \operatorname{tr} \left\{ \left(\mathbf{I}_{M} - \mathbf{A} \left(\mathbf{A}^{H} \mathbf{A} \right)^{-1} \mathbf{A}^{H} \right) \hat{\mathbf{R}} \right\}$$

Partial Relaxation Approach Revision of Conventional DOA Estimators

General Formulation

$$\left\{ \hat{\mathbf{A}} \right\} = \underset{\mathbf{A}\in\mathcal{A}_{N}}{\operatorname{arg\,min}} f(\mathbf{A})$$

Remarks

- ► *A_N*: Highly structured and non-convex set
- $f(\cdot)$: Generally non-convex function with multiple local minima
- Highly computational cost to obtain the global minimum

Example: Covariance Fitting (CF) Estimator

$$\left\{ \hat{\mathbf{A}}_{\mathsf{CF}} \right\} = \underset{\mathbf{A} \in \mathcal{A}_{\mathcal{N}}}{\operatorname{arg min min}} \underset{\mathbf{R}_{\mathsf{s}} \succeq \mathbf{0}}{\operatorname{min min}} \left\| \left| \hat{\mathbf{R}} - \mathbf{A} \mathbf{R}_{\mathsf{s}} \mathbf{A}^{\mathcal{H}} \right| \right|_{F}^{2}$$

Partial Relaxation Approach Revision of Conventional DOA Estimators

General Formulation

$$\left\{ \hat{\mathbf{A}} \right\} = \underset{\mathbf{A}\in\mathcal{A}_{N}}{\operatorname{arg\,min}} f(\mathbf{A})$$

Remarks

- ► *A_N*: Highly structured and non-convex set
- $f(\cdot)$: Generally non-convex function with multiple local minima
- Highly computational cost to obtain the global minimum

Objective: Find a suboptimal solution without substantial performance degradation

Partial Relaxation Approach Concept

General Formulation of Conventional Estimators

$$\left\{ \hat{\mathbf{A}} \right\} = \underset{\mathbf{A}\in\mathcal{A}_{N}}{\operatorname{arg\,min}} f\left(\mathbf{A} \right)$$

Relaxed Array Manifold

$$\bar{\mathcal{A}}_{N} = \left\{ \mathbf{A} \in \mathbb{C}^{M \times N} | \mathbf{A} = \left[\mathbf{a}(\vartheta), \mathbf{B} \right], \mathbf{a}(\vartheta) \in \mathcal{A}_{1}, \mathbf{B} \in \mathbb{C}^{M \times (N-1)} \right\}$$

Partial Relaxation Approach Concept

General Formulation of Conventional Estimators

 $\left\{ \hat{\mathbf{A}} \right\} = \underset{\mathbf{A} \in \mathcal{A}_{N}}{\arg\min f \left(\mathbf{A} \right)}$

Relaxed Array Manifold

$$\bar{\mathcal{A}}_{N} = \left\{ \mathbf{A} \in \mathbb{C}^{M \times N} | \mathbf{A} = \left[\mathbf{a}(\vartheta), \mathbf{B} \right], \mathbf{a}(\vartheta) \in \mathcal{A}_{1}, \mathbf{B} \in \mathbb{C}^{M \times (N-1)} \right\}$$

Formulation of the Partial Relaxation (PR) Approach

$$\{\hat{\mathbf{a}}_{\mathsf{PR}}\} = {}^{N} \underset{\mathbf{a} \in \mathcal{A}_{1}}{\operatorname{arg\,min}} \underset{\mathbf{B} \in \mathbb{C}^{M \times (N-1)}}{\operatorname{min}} f([\mathbf{a}, \mathbf{B}])$$

- Relax the manifold structure of the signals from interfering directions
- Grid-search for N-deepest local minima to obtain the estimated DOAs

Partial Relaxation Approach Proposed Estimators

Formulation of PR-Constrained Covariance Fitting (PR-CCF)

$$\{\hat{\mathbf{a}}_{\mathsf{PR-CCF}}\} = {}^{N} \underset{\mathbf{a} \in \mathcal{A}_{1}}{\operatorname{arg\,min}} \underset{\sigma_{s}^{2} \ge 0, \mathbf{E}}{\operatorname{min}} \left\| |\hat{\mathbf{R}} - \sigma_{s}^{2} \mathbf{a} \mathbf{a}^{H} - \mathbf{E} \mathbf{E}^{H} ||_{F}^{2}$$
subject to $\hat{\mathbf{R}} - \sigma_{s}^{2} \mathbf{a} \mathbf{a}^{H} - \mathbf{E} \mathbf{E}^{H} \succeq \mathbf{0}$ rank(\mathbf{E}) $\le N - 1$

PR-CCF Estimator

$$\{\hat{\mathbf{a}}_{\mathsf{PR-CCF}}\} = {^N \underset{\mathbf{a} \in \mathcal{A}_1}{\operatorname{arg\,min}}} \sum_{k=N}^M \lambda_k^2 \left(\hat{\mathbf{R}} - \frac{1}{\mathbf{a}^H \hat{\mathbf{R}}^{-1} \mathbf{a}} \mathbf{a}^H\right)$$

Remarks

- Not applicable if R is singular
- Eigenvalues are extensively required

Partial Relaxation Approach Proposed Estimators

PR-Unconstrained Covariance Fitting (PR-UCF)

$$\{\hat{\mathbf{a}}_{\mathsf{PR}\text{-}\mathsf{UCF}}\} = {}^{N} \underset{\mathbf{a}\in\mathcal{A}_{1}}{\operatorname{arg\,min}} \underset{\sigma_{s}^{2}\geq0,\mathbf{E}}{\operatorname{min}} \left| \left| \hat{\mathbf{R}} - \sigma_{s}^{2}\mathbf{aa}^{H} - \mathbf{EE}^{H} \right| \right|_{F}^{2}$$
subject to rank(\mathbf{E}) $\leq N - 1$

Equivalent formulation of the inner optimization

$$\min_{\sigma_s^2 \ge 0} \sum_{k=N}^{M} \lambda_k^2 \left(\hat{\mathbf{R}} - \sigma_s^2 \mathbf{a} \mathbf{a}^H \right)$$

- ▶ No closed-form solution for the minimizer $\hat{\sigma}_{s,U}^2$
- ► $\lambda_k^2 \left(\hat{\mathbf{R}} \sigma_s^2 \mathbf{a} \mathbf{a}^H \right)$ is continuously differentiable with respect to σ_s^2

Minimization by Bisection Search or Newton's Method possible

Table of Contents

Motivation

Signal Model

Partial Relaxation Approach

Computational Aspects

Simulation Results

Conclusions and Outlook

Computational Aspects Core Numerical Problem

Objective: Efficient computation of the eigenvalue decomposition $\mathbf{D} - \rho \mathbf{z} \mathbf{z}^{H} = \bar{\mathbf{U}} \bar{\mathbf{D}} \bar{\mathbf{U}}^{H}$

▶ **D** = diag(
$$d_1, ..., d_K$$
) $\in \mathbb{R}^{K \times K}$ with $d_1 > ... > d_K$

- ▶ $\mathbf{z} = [z_1, ..., z_K]^T \in \mathbb{C}^{K \times 1}$ has no zero component
- $\mathbf{\bar{D}} = \text{diag}(\mathbf{\bar{d}}_1, \dots, \mathbf{\bar{d}}_K) \in \mathbb{R}^{K \times K} \text{ with } \mathbf{\bar{d}}_1 > \dots > \mathbf{\bar{d}}_K$
- ▶ $\overline{\mathbf{U}} = [\overline{\mathbf{u}}_1, ..., \overline{\mathbf{u}}_K] \in \mathbb{C}^{K \times K}$ contains the normalized eigenvectors $\overline{\mathbf{u}}_k$ associated with the eigenvalues \overline{d}_k

Computational Aspects

Core Numerical Problem

Interlacing Property

a) The modified eigenvalues \overline{d}_k satisfy $h(\overline{d}_k) = 0$ where the secular function h(x) is defined as:

$$h(x) = 1 - \rho \mathbf{z}^{H} (\mathbf{D} - x \mathbf{I})^{-1} \mathbf{z}$$
$$= 1 - \rho \sum_{k=1}^{K} \frac{|z_{k}|^{2}}{d_{k} - x}$$

b) The modified eigenvalues \bar{d}_k down-interlace with the initial eigenvalues d_k

$$d_1 > \bar{d}_1 > d_2 > \bar{d}_2 > ... > d_K > \bar{d}_K$$

Objective: Determine \overline{d}_k which satisfies $h(\overline{d}_k) = 0$

Rewriting the secular function for determining \bar{d}_k

$$0 = 1 - \sum_{i=1}^{k} \frac{|z_i|^2}{d_i - x} - \sum_{i=k+1}^{K} \frac{|z_i|^2}{d_i - x}$$
$$\iff \sum_{i=1}^{k} \frac{|z_i|^2}{d_i - x} = 1 - \sum_{i=k+1}^{K} \frac{|z_i|^2}{d_i - x}$$
$$\iff -\psi_k(x) = 1 + \phi_k(x)$$

Idea: Approximate ψ_k and ϕ_k with a rational function of first degree

$$R_{k;p,q}(x) = \begin{cases} p + \frac{q}{d_{k+1} - x} & \text{if } 0 \le k \le K - 1\\ 0 & \text{if } k = K, \end{cases}$$

Rational Approximation

х

Rational Approximation

Closed-form update

Quadratic rate of convergence

Table of Contents

Motivation

Signal Model

Partial Relaxation Approach

Computational Aspects

Simulation Results

Conclusions and Outlook

Simulation Results Influence of SNR

 $M=10, \boldsymbol{\theta}=[45^\circ, 50^\circ]^T, \, T=8$

Simulation Results Execution Time

Table of Contents

Motivation

Signal Model

Partial Relaxation Approach

Computational Aspects

Simulation Results

Conclusions and Outlook

Conclusions and Outlook

Conclusions

- Structure of interfering directions is relaxed
- Proposed estimator based on the covariance fitting problem
- Improved non-asymptotic behavior without exploiting any special structure of the sensor array
- Efficient implementation using rank-one update

Outlook

- Statistical properties of the proposed DOA estimator
- Generalization to multidimensional parameter estimation

Thank you for your attention!

April 18, 2018 | NTS TUD | Minh Trinh Hoang, Mats Viberg and Marius Pesavento | 21

Appendix

Numerical Solution for PR-UCF using Bisection Search

Define

$$g(\sigma_s^2) = \sum_{k=N}^{M} \bar{\lambda}_k(\sigma_s^2) = \sum_{k=N}^{M} \lambda_k^2 \left(\hat{\mathbf{R}} - \sigma_s^2 \mathbf{a} \mathbf{a}^H \right)$$

Asymptotic analysis of $g'(\sigma_s^2)$

$$g'(\sigma_s^2) = -\sum_{k=N}^{M} \frac{2\bar{\lambda}_k(\sigma_s^2)}{\sigma_s^4 \mathbf{a}^H \left(\hat{\mathbf{R}} - \bar{\lambda}_k(\sigma_s^2) \mathbf{I}_M\right)^{-2} \mathbf{a}^2}$$

► If
$$\sigma_s^2 \to 0 \Rightarrow g'(\sigma_s^2) < 0$$

► If $\sigma_{s,0}^2 \to \infty$:
 $g(\sigma_s^2) \approx \sigma_s^4 ||\mathbf{a}||_2^4$
 $g'(\sigma_s^2) \to +\infty$

Minimization by finding an interval where $g'(\sigma_s^2)$ changes sign and performing bisection search

April 18, 2018 | NTS TUD | Minh Trinh Hoang, Mats Viberg and Marius Pesavento | 22

Appendix

Numerical Solution for PR-UCF using Newton's Method

Define

$$A = \sum_{j=1}^{N} \frac{|z_j|^2}{\left(\hat{\lambda}_j - \bar{\lambda}_k \left(\sigma_s^2\right)\right)^2}$$
$$B = \sum_{j=1}^{N} \frac{|z_j|^2}{\left(\hat{\lambda}_j - \bar{\lambda}_k \left(\sigma_s^2\right)\right)^3}$$

Second derivative of $g(\sigma_s^2) = \sum_{k=N}^{M} \bar{\lambda}_k^2 (\sigma_s^2)$

$$g''(\sigma_s^2) = \sum_{k=N}^{M} \frac{4\sigma_s^2 \bar{\lambda}_k(\sigma_s^2) A^2 - 4\bar{\lambda}_k(\sigma_s^2) B + A}{\sigma_s^8 A^3}$$

Appendix Eigenvalue Computation

Algorithm 1 Determining the *k*-th eigenvalue \bar{d}_k

- 1: Initial.: Iteration index τ = 0, initial point $x^{(0)} \in (d_{k+1}, d_k)$, tolerance ϵ = 10⁻⁹
- 2: repeat
- 3: Approximate $\psi_k(x)$ by determining the parameters p and q such that: $R_{k-1;p,q}(x^{(\tau)}) = \psi_k(x^{(\tau)})$ and $R'_{k-1;p,q}(x^{(\tau)}) = \psi'_k(x^{(\tau)})$
- 4: Approximate $\phi_k(x)$ by determining the parameters r and s such that: $R_{k;r,s}(x^{(\tau)}) = \phi_k(x^{(\tau)})$ and $R'_{k;r,s}(x^{(\tau)}) = \phi'_k(x^{(\tau)})$
- 5: Determine $x^{(\tau+1)} \in (d_{k+1}, d_k)$ which satisfies:

$$-R_{k-1;p,q}(x^{(\tau+1)}) = 1 + R_{k;r,s}(x^{(\tau+1)})$$

6: $\tau \leftarrow \tau + 1$ 7: until $|x^{(\tau+1)} - x^{(\tau)}| < \epsilon$ 8: return $\bar{d}_k = x^{(\tau+1)}$

Appendix Eigenvalue Computation

Remarks

- Eigenvalues of the previous direction are reused for initializations
- Reduced execution time by using properties of the trace operator

Application to PR-UCF

$$\begin{split} \bar{\lambda}_{k}(\sigma_{s}^{2}) &= \lambda_{k} \left(\hat{\mathbf{R}} - \sigma_{s}^{2} \mathbf{a} \mathbf{a}^{H} \right) \\ g'(\sigma_{s}^{2}) &= -2\mathbf{a}^{H} \hat{\mathbf{R}} \mathbf{a} + 2\sigma_{s}^{2} \left| \left| \mathbf{a} \right| \right|_{2}^{4} + \sum_{k=1}^{N-1} \frac{2\bar{\lambda}_{k} \left(\sigma_{s}^{2} \right)}{\sigma_{s,0}^{4} \mathbf{a}^{H} \left(\hat{\mathbf{R}} - \bar{\lambda}_{k} (\sigma_{s,0}^{2}) \mathbf{I}_{M} \right)^{-2} \mathbf{a}} \end{split}$$

Appendix Eigenvalue Computation

Remarks

- Eigenvalues of the previous direction are reused for initializations
- Reduced execution time by using properties of the trace operator

Application to PR-UCF

$$\begin{split} \bar{\lambda}_{k}(\sigma_{s}^{2}) &= \lambda_{k} \left(\hat{\mathbf{\Lambda}} - \sigma_{s}^{2} \mathbf{z} \mathbf{z}^{H} \right) \\ g'(\sigma_{s}^{2}) &= -2\mathbf{z}^{H} \hat{\mathbf{\Lambda}} \mathbf{z} + 2\sigma_{s}^{2} \left| |\mathbf{z}| \right|_{2}^{4} + \sum_{k=1}^{N-1} \frac{2\bar{\lambda}_{k} \left(\sigma_{s}^{2} \right)}{\sigma_{s}^{4} \sum_{j=1}^{M} \frac{|z_{j}|^{2}}{\left(\hat{\lambda}_{j} - \bar{\lambda}_{k} \left(\sigma_{s}^{2} \right) \right)^{2}} \end{split}$$

with $\hat{\mathbf{R}} = \hat{\mathbf{U}}\hat{\boldsymbol{\Lambda}}\hat{\mathbf{U}}^{H}$, $\mathbf{z} = \hat{\mathbf{U}}^{H}\mathbf{a}$

Appendix Complexity Summary

Total computational complexity (including overhead)

Estimator	Generic	Rank-one Update
PR-CCF	$O(M^3N_G)$	$O(M^2 N_G)$
PR-UCF	$O(M^3 N_G N_I)$	$O(M^2 N_G N_I)$
MUSIC	O(MNN _G)	

Table: Complexity for computing the null-spectra

- M : Number of sensors
- N : Number of sources
- ► *N_G*: Number of look-directions of the complete angle-of-view
- N₁ : Number of bisection steps

Appendix Influence of SNR

 $M = 10, \theta = [45^{\circ}, 50^{\circ}]^{T}, T = 40$

Appendix Influence of Number of Snapshots

Appendix Influence of Angular Separation

$$M = 10, \theta = [45^{\circ}, 45^{\circ} + \Delta \theta]^{T}, \text{SNR} = 10 \text{dB}, T = 100$$

April 18, 2018 | NTS TUD | Minh Trinh Hoang, Mats Viberg and Marius Pesavento | 29

Appendix Correlated Source Signals

 $M = 10, \theta = [45^{\circ}, 50^{\circ}]^{T}, \rho = 0.95, T = 200$

Appendix Bisection Method on PR-UCF

 $M = 10, \theta = [45^{\circ}, 50^{\circ}]^{T}, T = 100, N_{G} = 1800$

