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PROBLEMS
• Source localization using TDOA measurements in the system of nodes part

synchronization.
• Robust localization for the presence of nodes’ position errors.

CONTRIBUTIONS
• Present a source localization model based on TDOA measurements with lo-

cally synchronized anchor nodes.
• Propose two SDP-based localization algorithms for accurate and nonaccu-

rate anchor nodes’ position, respectively.

MEASUREMENTS MODEL & PROPOSED METHODS

A partly synchronous TDOA localization system has N clusters, and each cluster
hasMn sensors. The total number of sensors is

∑N
n=1Mn = f . f ≥ max(m+N, 2N)

is a required condition, where m is equal to 2 or 3.

1
1s .

..

.
.

1
2s

2
1s

2
2s

3
2s

3
1s

.

u

Cluster one

Cluster two

Cluster three

Figure 1: Illustration of nodes partly synchronous TDOA source localization system, where
the nodes connected by lines means they are synchronized

In nth cluster, let sn1 be the reference node. The TDOA measurements are

rni1 = dni − dn1 + eni1, dni = ‖u− sni ‖ , n = 1, 2, . . . , N, i = 2, 3, . . . ,Mn. (1)

Then the maximum likelihood estimator (MLE):

min
u

N∑
n=1

Mn∑
i=2

Mn∑
j=2

(
rni1 − ‖u− sni ‖+ ‖u− sn1‖

)
[Q−1

n ](i−1),(j−1) ·
(
rnj1 −

∥∥u− snj
∥∥+ ‖u− sn1‖

)
(2)

Next, (2) can be written as

min
u,dn

N∑
n=1

(rnd −And
n)TQ−1

n (rnd −And
n) (3a)

s.t. dni = ‖u− sni ‖ , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (3b)

where rnd = [rn21, r
n
31, . . . , r

n
Mn1

]T , dn = [dn1 , d
n
2 , . . . , d

n
Mn

]T , An = [−1Mn−1, IMn−1].
The objective function in (3a) can be rewritten as

N∑
n=1

(
tr(DnAT

nQ
−1
n An)− 2rnd

TQ−1
n And

n + rnd
TQ−1

n rnd
)

(4)

where Dn = dndnT .

The constraints in (3b) can be expressed as

Dn
i,i = ‖u− sni ‖

2
= ys − 2uT sni + sni

T sni , i = 1, 2, . . . ,Mn. (5)

where ys = uTu.
Using the Cauchy-Schwartz inequality, we can obtain

Dn
i,j ≥ |ys − uT (sni + snj ) + sni

T snj |, 1 ≤ i < j ≤Mn. (6)

Note that AT
nQ

−1
n An in (4) is singular. To improve the accuracy, as in [1], we

also introduce a penalty term
∑N

n=1 tr(D
n) into the objective function and add

the second-order-cone (SOC) constraints

‖u− sni ‖ ≤ dni , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (7)

Now, (3) can be relaxed into the following convex problem

min
dn,Dn,u,ys

N∑
n=1

(
tr(DnAT

nQ
−1
n An)− 2rnd

TQ−1
n And

n + ηtr(Dn)
)

(8a)

s.t. Dn
i,i = ys − 2uT sni + sni

T sni , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (8b)

‖u− sni ‖ ≤ dni , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (8c)

Dn
i,j ≥ |ys − uT (sni + snj ) + sni

T snj |, n = 1, 2, . . . , N, 1 ≤ i < j ≤Mn.

(8d)[
1 dnT

dn Dn

]
� 0, n = 1, 2, . . . , N, (8e)[

Im u
uT ys

]
� 0. (8f)

where η is the regularization parameter which is difficult to determine. To allevi-
ate this problem, first, we need to choose K different η, {ηk}Kk=1, and then solve (8)
with the K different choice of η, {ηk}Kk=1, finally, from the K estimates {ûk}Kk=1 to
select û that gives the minimum cost function Jk

Jk =
N∑

n=1

(rnd −And̂
n
k )

TQ−1
n (rnd −And̂

n
k ), k = 1, 2, . . . ,K. (9)
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ROBUST LOCALIZATION ALGORITHM FOR NODES’ POSITION ERRORS

In the previous discussion, the sensor positions are accurate. However, in practi-
cal, there exist the sensor position errors [2]. The obtained but erroneous sensor
position can be expressed as

bn
i = sni + βn

i (10)

where βn
i is the sensor position error, which is modeled as Gaussian white noise

with covariance matrix δni
2Im.

Under the condition of independent noises βn
i and eni1, the MLE problem can be

written as

min
u,sni

N∑
n=1

Mn∑
i=2

Mn∑
j=2

(
rni1 − ‖u− sni ‖+ ‖u− sn1‖

)
[Q−1

n ](i−1),(j−1) ·
(
rnj1 −

∥∥u− snj
∥∥+ ‖u− sn1‖

)
+

N∑
n=1

Mn∑
i=1

‖bn
i − sni ‖

2

δni
2 (11)

The above formulation can be reshaped as

min
X,dn

N∑
n=1

(rnd −And
n)TQ−1

n (rnd −And
n) +

∥∥∥(X(:, 2 : f + 1)−B)W
1
2

∥∥∥2
F

(12a)

s.t. dni =

∥∥∥∥∥X(:, 1)−X(:, 1 + i+

n−1∑
q=0

Mq)

∥∥∥∥∥ , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn.

(12b)

where M0 = 0, X = [u, s11, . . . , s
1
M1
, . . . , sN1 , . . . , s

N
MN

], B =

[b1
1, . . . ,b

1
M1
, . . . ,bN

1 , . . . ,b
N
MN

], and W = diag
(
[δ11

−2
, . . . , δ1M1

−2
, . . . , δN1

−2
, . . . , δNMN

−2
]
)
.

Let Y = XTX. Similar to the deviation of (8), we give the robust SDP localization
algorithm

min
dn,Dn,X,Y

N∑
n=1

(
tr(DnAT

nQ
−1
n An)− 2rnd

TQ−1
n And

n + ηtr(Dn)
)
+

tr
(
WY(2 : f + 1, 2 : f + 1)

)
− 2tr

(
WX(:, 2 : f + 1)TB

)
(13a)

s.t. Dn
i,i = Y (1, 1)− 2Y (1, 1 + i+

n−1∑
q=0

Mq) + Y (1 + i+
n−1∑
q=0

Mq, 1 + i+
n−1∑
q=0

Mq),

(13b)∥∥∥∥∥X(:, 1)−X(:, 1 + i+
n−1∑
q=0

Mq)

∥∥∥∥∥ ≤ dni , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (13c)

Dn
i,j ≥ |Y (1, 1)− Y (1, 1 + i+

n−1∑
q=0

Mq)− Y (1, 1 + j +
n−1∑
q=0

Mq)+

Y (1 + i+
n−1∑
q=0

Mq, 1 + j +
n−1∑
q=0

Mq)|, n = 1, 2, . . . , N, 1 ≤ i < j ≤Mn. (13d)

[
1 dnT

dn Dn

]
� 0, n = 1, 2, . . . , N, (13e)[

Im X
XT Y

]
� 0. (13f)

SIMULATIONS

There are four clusters TDOA measurements, and each cluster has two nodes. The
positions of the sensor nodes are [0, 0],[10, 0],[90, 0],[100, 0], [0, 90], [0, 100], [90, 90],
[90, 100]. We set K = 5, η1 = 10−4, η2 = 10−3, η3 = 10−2, η4 = 10−1, η5 = 100 for
the computation of (8) and (13). The proposed SDP algorithm is implemented by
CVX toolbox, using SeDuMi as a solver, and the precision is set to best.
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Figure 2: RMSE vs σ2, u = [74, 60]Tm.
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Figure 3: RMSE vs σ2, u = [74, 60]Tm, δ = 0.01m.


