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Motivations and Challenges

● The “cocktail party” problem 
○ Concurrent speakers (how many)  
○ Moving speakers (where)  
○ Speech extraction (what is said) 
○ Speaker identity (who said what) 
○ Interference (what not) 
○ Association over time (which to which) 
○ etc.
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Proposed Method

●Multi-feature extraction 
○ Speaker localization (concurrent, moving speakers) 
○ Speech separation (multiple speakers) 
○ Speaker identification (pitch estimation) 

● Joint online tracking 
○ Bayes RFS multi-object tracking for multi-speaker and 

multi-feature 
○ etc.
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System Overview

● Proof-of-concept
!4



Multi-feature Extraction

● Speaker localization 
○ Subspace methods (MUSIC, ESPRIT, etc.) 
○ Steered-response beamformers  
○ TDOA based techniques 

○ MCC-PHAT 
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number of microphones. We formulate a multi-channel implemen-
tation of the generalized cross-correlation - phase transform (GCC-
PHAT) method [15], which we refer to as the MCC-PHAT:
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ij (k, ⌧ij(&)), (1)

where

⇠
gcc�phat
ij (k, ⌧ij(&)) =

Z +1

�1
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Here i =
p
�1, [·]? the complex conjugate operation, Xi(k, f) and

Xj(k, f) are respectively the short-time Fourier transforms of mi-
crophone signals xi(·) and xj(·) at time frame k. (In practice, sound
signals are discretized into xi(n), n 2 Z at a sampling frequency
fs = 48000Hz, thus the short-time FFT is used in (3), and the inte-
gration in (2) becomes a summation.)

Time difference ⌧ij is a function of speaker direction of arrival
(DOA) & 2 [0, 360�) from a distance of r = 1m (far-field)

⌧ij(&) = (k~}(&)� ~mik � k~}(&)� ~mjk)/v, (4)

~}(&) = [r · cos &, r · sin &]. (5)
To avoid spatial alias, the set of microphone pairs P is

P = {(i, j) |k~mi � ~mjk < v/fmax); 1  i < j  M}, (6)

where v = 343m/s is the velocity of sound, and fmax = 3600Hz is
the maximum signal frequency considered.

In this paper, we use only one circular microphone array in the
azimuth plane. (Cartesian locations of speakers can be obtained us-
ing multiple microphone arrays.) The set of estimated DOAs of can-
didate speakers are denoted as ⇥̂k at time k:

⇥̂k = {&̂k,i | i = 1, . . . , Nk}, (7)

where &̂k,i correspond to the local peaks of ⇠mcc�phat(k, ·), and in-
teger Nk � 0 denotes the number of detected speakers (accounting
for spurious estimates from reflections, and miss detections due to
non-stationary or competing speech signals) at frame k. Nk = 0
indicates that no candidate speaker is detected and thus ⇥̂k = ;.
Assuming in general that the spurious estimates and miss detections
exhibit no temporal consistency from one time frame to the next,
while the estimates from true speakers follow a kinematic model,
tracking filters [1, 3, 6, 7, 8] can be applied to track speaker loca-
tions. Such approach is also applied for tracking multiple features as
shown in Section 3.

2.2. Sound Extraction

Speech signals from the DOA estimates &̂k,i can then be extracted
from the sound mixtures recorded by microphones. Here we im-
plement the wideband weighted least square (WLS) beamforming
method [14] for sound extraction.

The WLS beamformer uses the filter-and-sum structure, and has
Jt = 32 taps in each channel. Its mainlobe steers to the speaker
DOA &̂k,i, and the corresponding sidelobe ranges from &̂k,i + 15� to
&̂k,i � 15�. The frequency range used is [20, 8000]Hz.

The real-valued (Jt · M) ⇥ 1 optimal weight vector wk,i for a
DOA &̂k,i is obtained according to the wideband WLS beamformer

[14] and using the microphone locations ~mj , then the extracted
sound signal at time frame k can be calculated from:

ŝk,i

�
n) = wT

k,i x(n), (8)

where [·]T is the matrix transpose, and

x(n)=
⇥
x0(n), . . . ,xjt(n), . . . ,xJt�1(n)

⇤T
, jt 2 [0, Jt�1] (9)

xjt(n) =
⇥
x1(n+ jt), . . . , xj(n+ jt), . . . , xM (n+ jt)

⇤
. (10)

2.3. Acoustic Identity

The extracted sound ŝk,i that corresponds to a speaker location &̂k,i

can further be used to extract speaker’s acoustic identity, e.g. pitch,
Gaussian Mixture Model (GMM) [16] parameters, etc. In this pa-
per we use the pitch as a simple acoustic identity, as pitch can be
estimated from a short segment of voiced sound, different speakers
usually have different pitch, and pitch of a speaker is usually dis-
tributed within a limited range. Numerous pitch estimation methods
can be found in the literature. Here we employ the PEFAC (Pitch Es-
timation Filter with Amplitude Compression) method [17] and use
the averaged estimate of each frame, which we denote as F̂0k,i.

From (7) and (8), the vector of associated location, pitch and
sound of each candidate speaker at frame k form a multi-feature ob-
servation zk,i , (&̂k,i, F̂0k,i, ŝk,i). The multi-target multi-feature
observation is thus

Zk , {zk,i | i = 1, ..., Nk}, (11)

where Zk = ; when Nk = 0.
Instead of using the location estimates alone, we jointly extract

and track the location, pitch and sound features in the extended
multi-feature GLMB filter as follows.

3. MULTI-FEATURE GLMB

The multi-feature GLMB random finite set (RFS) X , {(xi, `i) | i 2
N} is a labeled RFS with state space X (here xi , (⇣i, F0i, si) 2 X
is the multi-feature target state vector, where ⇣i, F0i, si denote the
associated location and pitch feature states as well as the sound
signal, respectively), and label space L, (`i 2 L), where the labels
are unique, i.e. `i 6= `i0 , 8i 6= i

0. Its probability density in the
�-GLMB form is given as [6]

⇡(X) = �(X)
X

(I,⇠)2F(L)⇥⌅

!
(I,⇠)

�I(L(X))
h
p
(⇠)

iX
, (12)

where !
(I,⇠) is the probability of the hypothesis (I, ⇠), I is a set

of labels, ⇠ represents a history of association map between targets
and observations. p(⇠) is the probability distribution of a target state,
�(X) is the distinct label indicator, �I(L(X)) indicates whether the
set of labels in X matches that of I . The �-GLMB is completely
characterized by the set of parameters {(!(I,⇠)

, p
(⇠)) : (I, ⇠) 2

F(L)⇥⌅}. (Reader are encouraged to read [6, 7, 8] and their refer-
ences for detailed studies of the (G)LMB and �-GLMB RFS tracking
filters.)

The multi-feature GLMB recursion also consists of the multi-
object “update” step based on Bayes inference and the Chapman-
Kolmogorov [18] “prediction” step based on the state transition
models.



Multi-feature Extraction

● Speech Separation 
○ BSS, TFM, etc. 
○ Wideband Beamformer (WLS, filter-and-sum)
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number of microphones. We formulate a multi-channel implemen-
tation of the generalized cross-correlation - phase transform (GCC-
PHAT) method [15], which we refer to as the MCC-PHAT:
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Here i =
p
�1, [·]? the complex conjugate operation, Xi(k, f) and

Xj(k, f) are respectively the short-time Fourier transforms of mi-
crophone signals xi(·) and xj(·) at time frame k. (In practice, sound
signals are discretized into xi(n), n 2 Z at a sampling frequency
fs = 48000Hz, thus the short-time FFT is used in (3), and the inte-
gration in (2) becomes a summation.)

Time difference ⌧ij is a function of speaker direction of arrival
(DOA) & 2 [0, 360�) from a distance of r = 1m (far-field)

⌧ij(&) = (k~}(&)� ~mik � k~}(&)� ~mjk)/v, (4)

~}(&) = [r · cos &, r · sin &]. (5)
To avoid spatial alias, the set of microphone pairs P is

P = {(i, j) |k~mi � ~mjk < v/fmax); 1  i < j  M}, (6)

where v = 343m/s is the velocity of sound, and fmax = 3600Hz is
the maximum signal frequency considered.

In this paper, we use only one circular microphone array in the
azimuth plane. (Cartesian locations of speakers can be obtained us-
ing multiple microphone arrays.) The set of estimated DOAs of can-
didate speakers are denoted as ⇥̂k at time k:

⇥̂k = {&̂k,i | i = 1, . . . , Nk}, (7)

where &̂k,i correspond to the local peaks of ⇠mcc�phat(k, ·), and in-
teger Nk � 0 denotes the number of detected speakers (accounting
for spurious estimates from reflections, and miss detections due to
non-stationary or competing speech signals) at frame k. Nk = 0
indicates that no candidate speaker is detected and thus ⇥̂k = ;.
Assuming in general that the spurious estimates and miss detections
exhibit no temporal consistency from one time frame to the next,
while the estimates from true speakers follow a kinematic model,
tracking filters [1, 3, 6, 7, 8] can be applied to track speaker loca-
tions. Such approach is also applied for tracking multiple features as
shown in Section 3.

2.2. Sound Extraction

Speech signals from the DOA estimates &̂k,i can then be extracted
from the sound mixtures recorded by microphones. Here we im-
plement the wideband weighted least square (WLS) beamforming
method [14] for sound extraction.

The WLS beamformer uses the filter-and-sum structure, and has
Jt = 32 taps in each channel. Its mainlobe steers to the speaker
DOA &̂k,i, and the corresponding sidelobe ranges from &̂k,i + 15� to
&̂k,i � 15�. The frequency range used is [20, 8000]Hz.

The real-valued (Jt · M) ⇥ 1 optimal weight vector wk,i for a
DOA &̂k,i is obtained according to the wideband WLS beamformer

[14] and using the microphone locations ~mj , then the extracted
sound signal at time frame k can be calculated from:
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2.3. Acoustic Identity

The extracted sound ŝk,i that corresponds to a speaker location &̂k,i

can further be used to extract speaker’s acoustic identity, e.g. pitch,
Gaussian Mixture Model (GMM) [16] parameters, etc. In this pa-
per we use the pitch as a simple acoustic identity, as pitch can be
estimated from a short segment of voiced sound, different speakers
usually have different pitch, and pitch of a speaker is usually dis-
tributed within a limited range. Numerous pitch estimation methods
can be found in the literature. Here we employ the PEFAC (Pitch Es-
timation Filter with Amplitude Compression) method [17] and use
the averaged estimate of each frame, which we denote as F̂0k,i.

From (7) and (8), the vector of associated location, pitch and
sound of each candidate speaker at frame k form a multi-feature ob-
servation zk,i , (&̂k,i, F̂0k,i, ŝk,i). The multi-target multi-feature
observation is thus

Zk , {zk,i | i = 1, ..., Nk}, (11)

where Zk = ; when Nk = 0.
Instead of using the location estimates alone, we jointly extract

and track the location, pitch and sound features in the extended
multi-feature GLMB filter as follows.

3. MULTI-FEATURE GLMB

The multi-feature GLMB random finite set (RFS) X , {(xi, `i) | i 2
N} is a labeled RFS with state space X (here xi , (⇣i, F0i, si) 2 X
is the multi-feature target state vector, where ⇣i, F0i, si denote the
associated location and pitch feature states as well as the sound
signal, respectively), and label space L, (`i 2 L), where the labels
are unique, i.e. `i 6= `i0 , 8i 6= i

0. Its probability density in the
�-GLMB form is given as [6]
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where !
(I,⇠) is the probability of the hypothesis (I, ⇠), I is a set

of labels, ⇠ represents a history of association map between targets
and observations. p(⇠) is the probability distribution of a target state,
�(X) is the distinct label indicator, �I(L(X)) indicates whether the
set of labels in X matches that of I . The �-GLMB is completely
characterized by the set of parameters {(!(I,⇠)

, p
(⇠)) : (I, ⇠) 2

F(L)⇥⌅}. (Reader are encouraged to read [6, 7, 8] and their refer-
ences for detailed studies of the (G)LMB and �-GLMB RFS tracking
filters.)

The multi-feature GLMB recursion also consists of the multi-
object “update” step based on Bayes inference and the Chapman-
Kolmogorov [18] “prediction” step based on the state transition
models.



Multi-feature Extraction

● Speaker Identification 
○ GMM, NN, etc. 
○ Pitch 

÷ PEFAC, SHRP, YIN, RAPT, etc. 
÷ Example (SNR=25dB, babble noise)
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Multi-Feature GLMB

● Background 
○ Random Finite Set (RFS) 
○ Bayes rule, Chapman-Kolmogorov equation  
○ Conjugate prior  
○ GLMB 
○ Hypothesis and Probability density 
○ Distinct label indicator 
○ Label set, association map 
○ Projection function
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multi-object inference and filtering problems. In multi-object
filtering, if we start with the proposed conjugate initial prior,
then all subsequent predicted and posterior distributions have
the same form as the initial prior. We illustrate an application
of these results by a multi-target tracking example. Preliminary
results have been published in [18]. The current work is a
more complete study with stronger results. A related, but
independent, investigation on conjugate priors for (unlabeled)
RFS is also being undertaken, with work in progress reported
in [19].

The paper is organized as follows. A brief overview of
conjugate priors and multi-object estimation is provided in
section II while labeled RFSs and their properties are intro-
duced in Section III. Section IV introduces the generalized
labeled multi-Bernoulli RFS, and show that it is conjugate
prior as well as being closed under the multi-object Chapman-
Kolmogorov equation. Section V establishes similar results on
a smaller family within the class of generalized labeled multi-
Bernoulli RFSs based on which a novel multi-target tracking
filter is proposed and demonstrated via a numerical example.
Concluding remarks and extensions are discussed in section
VII.

II. BACKGROUND

This section provides background on conjugate priors and
the two key Bayesian inference problems investigated in
this paper: The multi-object Bayes update and Chapman-
Kolmogorov equation.

A. Conjugate Priors
In Bayesian inference, the hidden state (or parameter)

x 2 X is assumed to be distributed according to a prior p.
Further, the state is partially observed as z 2 Z, called the
observation, in accordance with the likelihood function g(z|x).
All information about the state is encapsulated in the posterior,
given by Bayes rule:

p(x|z) =
g(z|x)p(x)R
g(z|≥)p(≥)d≥

.

For a given likelihood function, if the posterior p(·|z)
belongs to the same family as the prior p, the prior and
posterior are said to be conjugate distributions, and the prior is
called a conjugate prior. For example, the Gaussian family is
conjugate with respect to a Gaussian likelihood function. Other
well-known likelihood-prior combinations in the exponential
family include, binomial-beta, Poisson-gamma, and gamma-
gamma models, see [15] for a catalogue.

Computing the posterior is generally intractable due to the
integration in the normalizing constant

R
g(z|≥)p(≥)d≥. This is

especially true in nonparametric inference where the posterior
can be very complex. A conjugate prior is an algebraic
convenience, providing a closed-form for the posterior and
avoids a difficult numerical integration problem. Moreover,
posteriors with the same functional form as the prior often
inherit desirable properties that are important for analysis and
interpretation.

B. Bayesian Multi-object Inference

This work considers a more general setting where, instead
of a single state x 2 X, we have a finite set of states
X Ω X, called a multi-object state, distributed according
to a multi-object prior º. The multi-object state is partially
observed as a finite set of points Z Ω Z, called the multi-
object observation, through thinning of misdetected objects,
Markov shifts of detected objects, and superposition of false
observations. The observation model is described by the multi-
object likelihood function g(Z|X), (given in subsection IV-C)
which encapsulates, in addition to the usual observation noise,

• detection uncertainty: each object may or may not gen-
erate an observation,

• clutter: observations are corrupted by spurious/false mea-
surements not originating from any object,

• data association uncertainty: there is no information on
which object generated which observation.

In this setting, the number of elements of a multi-object
state and the values of these elements are random variables.
All information on the multi-object state (including the number
of objects) is contained in the multi-object posterior, given by

º(X|Y ) =
g(Y |X)º(X)R
g(Y |X)º(X)±X

(1)

where
Z

f(X)±X =
1X

i=0

1
i!

Z

Xi

f({x1, ..., xi})d(x1, · · · , xi),

is the set integral of a function f taking the class of finite
subsets of X, denoted as F(X), to the real line R. It is implicit
that the multi-object state and observation are modeled as
random finite sets (RFSs) and that the probability densities of
these RFS are interpreted via the Finite Set Statistic (FISST)
notion of integration/density proposed by Mahler [1], [20].

While the multi-object posterior is central to Bayesian
inference, computationally tractable analytic characterizations
are not available in general1. In spatial statistics, the multi-
object posterior encapsulates the spatial distribution of point
patterns as well as relevant statistics [5], [6], and is often
approximated via Markov Chain Monte Carlo simulation [7].
In target tracking, the multi-object posterior contains infor-
mation on target number, locations, velocities [1], and is often
approximated, e.g. Probability Hypothesis Density (PHD) filter
[20], Cardinalized PHD filter [21], and multi-Bernoulli filter
[1], [22]. Implementations of these filters are developed in
[23], [24], [25], [26], [22], with convergence analysis given
in [23], [27], [28], [29], [30]. Conjugate priors are important
in multi-object inference since the posteriors are extremely
complex due to the high dimensionality and combinatorial
nature of the problem.

1For the special case of separable multi-object likelihood functions, the
multi-object posterior can be computed analytically for certain classes of
(conjugate) priors [17].
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C. Chapman-Kolmogorov Equation
An additional problem arises when the multi-object state

evolves in time due to motion, births and deaths of objects,
as is the case in multi-target tracking. A given multi-object
state X evolves to the multi-object state X+ at the next time
step via thinning of dying objects, Markov shift of surviving
objects and superposition of new objects. This multi-object
dynamic model is described by the multi-object (Markov)
transition kernel f(X+|X), (the specific expression is given in
subsection IV-C). Before Bayes rule can be applied to compute
the posterior from the next observation, the multi-object prior
needs to be predicted forward to account for multi-object
evolution via the Chapman-Kolmogorov equation [1]

º+(X+) =
Z

f(X+|X)º(X)±X. (2)

Bayesian inference in a dynamic setting involves computa-
tion of the posterior at each time step. In applications such
as multi-target tracking where inference is performed online,
recursive computation (of the posterior) via the so-called multi-
object Bayes filter is the preferred approach. Let Xk and
Zk denote the multi-object state and measurement at time k.
Then introducing time indices into the Chapman-Kolmogorov
equation (2) and Bayes rule (1), we have, respectively, the
prediction and update steps of the multi-object Bayes filter:

ºk|k°1(Xk|Z1:k°1) =
Z

fk|k°1(Xk|X)ºk°1(X|Z1:k°1)±X, (3)

ºk(Xk|Z1:k) =
gk(Zk|Xk)ºk|k°1(Xk|Z1:k°1)R
gk(Zk|X)ºk|k°1(X|Z1:k°1)±X

, (4)

where Z1:k = (Z1, ..., Zk) denotes the measurement history
up to time k; ºk|k°1(·|Z1:k°1) and fk|k°1(·|·) denote multi-
object prediction and transition kernel from time k ° 1 to k;
ºk(·|Z1:k) and gk(·|·) denote the multi-object posterior and
likelihood function at time k.

In general, the multi-object prediction º+ is difficult to
characterize analytically and does not necessarily take on the
same form as the multi-object prior. A known exception is the
multi-Bernoulli prior, which preserves its form when predicted
forward by a special case of the multi-object transition kernel
with multi-Bernoulli births [1]. However, it is not a conju-
gate prior and the posterior is no-longer multi-Bernoulli. A
conjugate multi-object prior family that is closed under the
Chapman-Kolmogorov equation means that at all time, the
posterior stays in the same family.

III. LABELED RANDOM FINITE SETS

This section introduces the notion of labeled RFSs. We
begin in subsection III-A with examples of common RFSs
and proceed to the treatment of labeled RFSs in subsection
III-B.

A. Random finite sets
In essence, an RFS is simply a finite-set-valued random

variable. What distinguishes an RFS from a random vector is

that: the number of points is random; the points themselves
are random and unordered. As mentioned earlier, we use the
FISST notion of integration/density to characterize RFSs [1],
[20]. While not a probability density [1], the FISST density is
equivalent to a probability density relative to an unnormalized
distribution of a Poisson RFS (see [23]). For simplicity, in
this paper, we shall not distinguish a FISST density and a
probability density.

Throughout the paper, we use the standard inner product
notation

hf, gi ,
Z

f(x)g(x)dx,

and the following multi-object exponential notation

hX , Q
x2X h(x), (5)

where h is a real-valued function, with h; = 1 by convention.
We denote a generalization of the Kroneker delta that takes
arbitrary arguments such as sets, vectors, integers etc, by

±Y (X) ,
Ω

1, if X = Y
0, otherwise ,

and the inclusion function, a generalization of the indicator
function, by

1Y (X) ,
Ω

1, if X µ Y
0, otherwise .

We also write 1Y (x) in place of 1Y ({x}) when X = {x}.
1) Poisson RFS: An RFS X on X is said to be Poisson

with intensity function v (defined on X) if
• its cardinality |X| is Poisson distributed with mean hv, 1i,

i.e. |X| ª Poishv,1i, and
• for any finite cardinality, the elements of X are indepen-

dently and identically distributed (i.i.d.) according to the
probability density v(·)/ hv, 1i.

The probability density of this Poisson RFS is given by (see
[1] pp. 366)

º(X) = e°hv,1ivX (6)

The intensity function, also known in the tracking literature
as the Probability Hypothesis Density (PHD), completely
characterizes a Poisson RFS.

2) Bernoulli RFS: A Bernoulli RFS X on X has probability
1 ° r of being empty, and probability r of being a singleton
whose (only) element is distributed according to a probability
density p (defined on X). The cardinality distribution of a
Bernoulli RFS is a Bernoulli distribution with parameter r.
The probability density of a Bernoulli RFS is given by (see
[1] pp. 368)

º(X) =
Ω

1° r
r · p(x)

X = ;,
X = {x}. (7)

3) Multi-Bernoulli RFS: A multi-Bernoulli RFS X on X
is a union of a fixed number of independent Bernoulli RFSs
X(i) with existence probability r(i) 2 (0, 1) and probability
density p(i) (defined on X), i = 1, ...,M , i.e. X =

SM
i=1 X(i).

A multi-Bernoulli RFS is thus completely described by the

number of microphones. We formulate a multi-channel implemen-
tation of the generalized cross-correlation - phase transform (GCC-
PHAT) method [15], which we refer to as the MCC-PHAT:

⇠
mcc�phat(k, &) ,

Y

(i,j)2P

⇠
gcc�phat
ij (k, ⌧ij(&)), (1)

where

⇠
gcc�phat
ij (k, ⌧ij(&)) =

Z +1

�1
⌅gcc�phat

ij (k, f) · ei2⇡f⌧ij(&)df, (2)

and

⌅gcc�phat
ij (k, f) =

Xi(k, f) ·X?
j (k, f)

|Xi(k, f) ·X?
j (k, f)|

. (3)

Here i =
p
�1, [·]? the complex conjugate operation, Xi(k, f) and

Xj(k, f) are respectively the short-time Fourier transforms of mi-
crophone signals xi(·) and xj(·) at time frame k. (In practice, sound
signals are discretized into xi(n), n 2 Z at a sampling frequency
fs = 48000Hz, thus the short-time FFT is used in (3), and the inte-
gration in (2) becomes a summation.)

Time difference ⌧ij is a function of speaker direction of arrival
(DOA) & 2 [0, 360�) from a distance of r = 1m (far-field)

⌧ij(&) = (k~}(&)� ~mik � k~}(&)� ~mjk)/v, (4)

~}(&) = [r · cos &, r · sin &]. (5)
To avoid spatial alias, the set of microphone pairs P is

P = {(i, j) |k~mi � ~mjk < v/fmax); 1  i < j  M}, (6)

where v = 343m/s is the velocity of sound, and fmax = 3600Hz is
the maximum signal frequency considered.

In this paper, we use only one circular microphone array in the
azimuth plane. (Cartesian locations of speakers can be obtained us-
ing multiple microphone arrays.) The set of estimated DOAs of can-
didate speakers are denoted as ⇥̂k at time k:

⇥̂k = {&̂k,i | i = 1, . . . , Nk}, (7)

where &̂k,i correspond to the local peaks of ⇠mcc�phat(k, ·), and in-
teger Nk � 0 denotes the number of detected speakers (accounting
for spurious estimates from reflections, and miss detections due to
non-stationary or competing speech signals) at frame k. Nk = 0
indicates that no candidate speaker is detected and thus ⇥̂k = ;.
Assuming in general that the spurious estimates and miss detections
exhibit no temporal consistency from one time frame to the next,
while the estimates from true speakers follow a kinematic model,
tracking filters [1, 3, 6, 7, 8] can be applied to track speaker loca-
tions. Such approach is also applied for tracking multiple features as
shown in Section 3.

2.2. Sound Extraction

Speech signals from the DOA estimates &̂k,i can then be extracted
from the sound mixtures recorded by microphones. Here we im-
plement the wideband weighted least square (WLS) beamforming
method [14] for sound extraction.

The WLS beamformer uses the filter-and-sum structure, and has
Jt = 32 taps in each channel. Its mainlobe steers to the speaker
DOA &̂k,i, and the corresponding sidelobe ranges from &̂k,i + 15� to
&̂k,i � 15�. The frequency range used is [20, 8000]Hz.

The real-valued (Jt · M) ⇥ 1 optimal weight vector wk,i for a
DOA &̂k,i is obtained according to the wideband WLS beamformer

[14] and using the microphone locations ~mj , then the extracted
sound signal at time frame k can be calculated from:

ŝk,i

�
n) = wT

k,i x(n), (8)

where [·]T is the matrix transpose, and

x(n)=
⇥
x0(n), . . . ,xjt(n), . . . ,xJt�1(n)

⇤T
, jt 2 [0, Jt�1] (9)

xjt(n) =
⇥
x1(n+ jt), . . . , xj(n+ jt), . . . , xM (n+ jt)

⇤
. (10)

2.3. Acoustic Identity

The extracted sound ŝk,i that corresponds to a speaker location &̂k,i

can further be used to extract speaker’s acoustic identity, e.g. pitch,
Gaussian Mixture Model (GMM) [16] parameters, etc. In this pa-
per we use the pitch as a simple acoustic identity, as pitch can be
estimated from a short segment of voiced sound, different speakers
usually have different pitch, and pitch of a speaker is usually dis-
tributed within a limited range. Numerous pitch estimation methods
can be found in the literature. Here we employ the PEFAC (Pitch Es-
timation Filter with Amplitude Compression) method [17] and use
the averaged estimate of each frame, which we denote as F̂0k,i.

From (7) and (8), the vector of associated location, pitch and
sound of each candidate speaker at frame k form a multi-feature ob-
servation zk,i , (&̂k,i, F̂0k,i, ŝk,i). The multi-target multi-feature
observation is thus

Zk , {zk,i | i = 1, ..., Nk}, (11)

where Zk = ; when Nk = 0.
Instead of using the location estimates alone, we jointly extract

and track the location, pitch and sound features in the extended
multi-feature GLMB filter as follows.

3. MULTI-FEATURE GLMB

The multi-feature GLMB random finite set (RFS) X , {(xi, `i) | i 2
N} is a labeled RFS with state space X (here xi , (⇣i, F0i, si) 2 X
is the multi-feature target state vector, where ⇣i, F0i, si denote the
associated location and pitch feature states as well as the sound
signal, respectively), and label space L, (`i 2 L), where the labels
are unique, i.e. `i 6= `i0 , 8i 6= i

0. Its probability density in the
�-GLMB form is given as [6]

⇡(X) = �(X)
X

(I,⇠)2F(L)⇥⌅

!
(I,⇠)

�I(L(X))
h
p
(⇠)

iX
, (12)

where !
(I,⇠) is the probability of the hypothesis (I, ⇠), I is a set

of labels, ⇠ represents a history of association map between targets
and observations. p(⇠) is the probability distribution of a target state,
�(X) is the distinct label indicator, �I(L(X)) indicates whether the
set of labels in X matches that of I . The �-GLMB is completely
characterized by the set of parameters {(!(I,⇠)

, p
(⇠)) : (I, ⇠) 2

F(L)⇥⌅}. (Reader are encouraged to read [6, 7, 8] and their refer-
ences for detailed studies of the (G)LMB and �-GLMB RFS tracking
filters.)

The multi-feature GLMB recursion also consists of the multi-
object “update” step based on Bayes inference and the Chapman-
Kolmogorov [18] “prediction” step based on the state transition
models.
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If the current RFS prediction density is a �-GLMB of the form (12),
using the current multi-feature observation Z as defined in (11), the
posterior density is a �-GLMB [7], i.e.

⇡(X|Z) =

�(X)
X

(I,⇠)2F(L)⇥⌅

X

✓2⇥(I)

!
(I,⇠,✓)(Z)�I(L(X))

h
p
(⇠,✓)(·|Z)

iX
,

(13)

where ⇥(I) denotes the subset of current association maps with do-
main I , and standard derivations of !(I,⇠,✓)(Z) and p

(⇠,✓)(x, `|Z) are
provided in [7]. (For denotation simplicity we drop the subscript k
here.)

Following the definitions in [7], clutter is assumed Poisson with
an average of 0.044 clutter points per scan, i.e. the localization
method in Section 2.1 produces almost clean location estimates in
low reverberation. The probability of a target state being detected is
pD = 0.98N (F0; 280, 30

2)/N (280; 280, 302).
In this paper, g(z✓(`)|x, `) denotes the multi-feature likeli-

hood for the measurement z✓(`) 2 Z being generated by (x, `) =
((⇣, F0, s), `), where s = ŝ✓(`) after update. Sound separation for
respective speakers over time is achieved by concatenating sound
signals s of the same target label. Assuming that the transition-
ing features (location and pitch) are statistically independent, the
proposed multi-feature likelihood function is:

g(z✓(`)|x, `) , g(&̂✓(`)|⇣, `) · g(F̂0✓(`)|F0, `), (14)

where g(&̂✓(`)|⇣, `) = N (&̂✓(`); ⇣,�
2
& ) and g(F̂0✓(`)|F0, `) =

N (F̂0✓(`);F0,�
2
F0

) in this paper. �& = 2� and �F0 = 10Hz
are the standard deviations of the observation of the location and
pitch, respectively. After update, the maximum a posteriori (MAP)
estimate of the cardinality (number of speakers) is chosen, and the
highest weighted corresponding hypothesis is used for the multi-
target multi-feature tracking results.

3.2. Multi-feature GLMB Recursion: Prediction

If the current RFS filtering density from its previous update step is a
�-GLMB of the form (12), the prediction density to the next time is
a �-GLMB given as [7]

⇡+(X+) = �(X+)
X

(I+,⇠)2F(L+)⇥⌅

!
(I+,⇠)
+ �I+(L(X+))

h
p
(⇠)
+

iX+
,

(15)
where standard derivations of !(I+,⇠)

+ and p
(⇠)
+ (x, `) can be found in

[7]. [·]+ stands for prediction. The survival probability is pS(·, `) =
0.75.

Using the assumption that the transitioning features are statis-
tically independent, the proposed state transition function for the
multi-feature GLMB is:

f(x|·, `) = 1x(⇣) · f(⇣|·, `) · 1x(F0) · f(F0|·, `), (16)

where the inclusion function is defined as

1Y (X) ,
⇢

1, if X is included in Y

0, otherwise. (17)

We assume the motion of the speaker DOA follows the Langevin
process [19, 1, 3], which is also a first-order Markov model:

f(⇣|⇣0, `) =

1 t�

0 e
��⇣ ·t�

�
· ⇣0 +w⇣ ·


0

�⇣

p
1� e

�2�⇣ ·t�

�
, (18)

⇣ = [&, &̇]T , &̇ is the velocity of DOA & . t� = 0.1s is the time step,
w⇣ follows the normal distribution, i.e. w⇣ ⇠ N (·; 0, 1). Model
parameters �⇣ = 0.2s�1 and �⇣ = 10�/s are respectively the rate
constant and the steady-state root-mean-square velocity for the ran-
dom motions of speakers.

We also assume that the pitch of a speaker follows a simple nor-
mal distribution around its previous estimate. Thus the state transi-
tion function for pitch is:

f(F0|F0
0
, `) = N (F0;F0

0
, �̃

2
F0

), (19)

where �̃F0 = 30Hz is the standard deviation for the transition of
pitch. Adaptive measurement-driven target births are generated [8,
20]. New target births are assumed to follow normal distributions
around the previous measurement, where the standard deviation is
5� for the DOA, and 30Hz for the pitch, respectively. The non-
stationary sound signals are treated as the non-transitioning feature,
thus targets carry no sound in prediction until the next update step of
the multi-feature GLMB recursion.

4. NUMERICAL STUDIES

4.1. Experiment Setup

This section verifies and demonstrates the performance of the pro-
posed multi-feature GLMB framework in the scenario of three
speakers.

The setup is as shown in the left panel of Fig. 1, where the room
dimensions are 3.4(W )⇥ 7.6(L)⇥ 2.7(H)m3, the microphone ar-
ray locates at [1.2, 3.9, 1.5]m, which is composed of M = 8 micro-
phones evenly distributed on a circle with a diameter of 0.1m. For
clarity, we choose an anechoic scenario that Speaker A (male) and
B (female) both locate at DOA of 232.1� while Speaker C (female)
moves from DOA of 40� to 75�, with respect to the center of the
microphone array. Fig. 2 plots the normalized ground truth speech
signals of respective speakers as well as their mixture captured by
one of the microphones. Obviously, using location (DOA) informa-
tion alone, standard implementations of tracking methods can only
take Speaker A and B as a same speaker. (The scenario when closely
located speakers talk concurrently is not in the scope of this paper.)
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Fig. 2. Ground truth (top three panels) of the normalized speech sig-
nals of three speakers (one male and two female), and their mixture
at one of the microphones (bottom panel).

4.2. Test Results

Fig. 3 provides the ground truth locations, estimated speaker loca-
tions, pitch and separated sound signals. The top panel depicts the
ground truth locations in straight line segments, our estimated loca-
tions in symbol “⇥” and tracking results in solid colored symbols.

3.1. Multi-feature GLMB Recursion: Update

If the current RFS prediction density is a �-GLMB of the form (12),
using the current multi-feature observation Z as defined in (11), the
posterior density is a �-GLMB [7], i.e.

⇡(X|Z) =

�(X)
X
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where ⇥(I) denotes the subset of current association maps with do-
main I , and standard derivations of !(I,⇠,✓)(Z) and p

(⇠,✓)(x, `|Z) are
provided in [7]. (For denotation simplicity we drop the subscript k
here.)

Following the definitions in [7], clutter is assumed Poisson with
an average of 0.044 clutter points per scan, i.e. the localization
method in Section 2.1 produces almost clean location estimates in
low reverberation. The probability of a target state being detected is
pD = 0.98N (F0; 280, 30

2)/N (280; 280, 302).
In this paper, g(z✓(`)|x, `) denotes the multi-feature likeli-

hood for the measurement z✓(`) 2 Z being generated by (x, `) =
((⇣, F0, s), `), where s = ŝ✓(`) after update. Sound separation for
respective speakers over time is achieved by concatenating sound
signals s of the same target label. Assuming that the transition-
ing features (location and pitch) are statistically independent, the
proposed multi-feature likelihood function is:

g(z✓(`)|x, `) , g(&̂✓(`)|⇣, `) · g(F̂0✓(`)|F0, `), (14)

where g(&̂✓(`)|⇣, `) = N (&̂✓(`); ⇣,�
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& ) and g(F̂0✓(`)|F0, `) =
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) in this paper. �& = 2� and �F0 = 10Hz
are the standard deviations of the observation of the location and
pitch, respectively. After update, the maximum a posteriori (MAP)
estimate of the cardinality (number of speakers) is chosen, and the
highest weighted corresponding hypothesis is used for the multi-
target multi-feature tracking results.

3.2. Multi-feature GLMB Recursion: Prediction

If the current RFS filtering density from its previous update step is a
�-GLMB of the form (12), the prediction density to the next time is
a �-GLMB given as [7]
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where standard derivations of !(I+,⇠)
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[7]. [·]+ stands for prediction. The survival probability is pS(·, `) =
0.75.

Using the assumption that the transitioning features are statis-
tically independent, the proposed state transition function for the
multi-feature GLMB is:

f(x|·, `) = 1x(⇣) · f(⇣|·, `) · 1x(F0) · f(F0|·, `), (16)

where the inclusion function is defined as

1Y (X) ,
⇢

1, if X is included in Y

0, otherwise. (17)

We assume the motion of the speaker DOA follows the Langevin
process [19, 1, 3], which is also a first-order Markov model:
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⇣ = [&, &̇]T , &̇ is the velocity of DOA & . t� = 0.1s is the time step,
w⇣ follows the normal distribution, i.e. w⇣ ⇠ N (·; 0, 1). Model
parameters �⇣ = 0.2s�1 and �⇣ = 10�/s are respectively the rate
constant and the steady-state root-mean-square velocity for the ran-
dom motions of speakers.

We also assume that the pitch of a speaker follows a simple nor-
mal distribution around its previous estimate. Thus the state transi-
tion function for pitch is:
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where �̃F0 = 30Hz is the standard deviation for the transition of
pitch. Adaptive measurement-driven target births are generated [8,
20]. New target births are assumed to follow normal distributions
around the previous measurement, where the standard deviation is
5� for the DOA, and 30Hz for the pitch, respectively. The non-
stationary sound signals are treated as the non-transitioning feature,
thus targets carry no sound in prediction until the next update step of
the multi-feature GLMB recursion.

4. NUMERICAL STUDIES

4.1. Experiment Setup

This section verifies and demonstrates the performance of the pro-
posed multi-feature GLMB framework in the scenario of three
speakers.

The setup is as shown in the left panel of Fig. 1, where the room
dimensions are 3.4(W )⇥ 7.6(L)⇥ 2.7(H)m3, the microphone ar-
ray locates at [1.2, 3.9, 1.5]m, which is composed of M = 8 micro-
phones evenly distributed on a circle with a diameter of 0.1m. For
clarity, we choose an anechoic scenario that Speaker A (male) and
B (female) both locate at DOA of 232.1� while Speaker C (female)
moves from DOA of 40� to 75�, with respect to the center of the
microphone array. Fig. 2 plots the normalized ground truth speech
signals of respective speakers as well as their mixture captured by
one of the microphones. Obviously, using location (DOA) informa-
tion alone, standard implementations of tracking methods can only
take Speaker A and B as a same speaker. (The scenario when closely
located speakers talk concurrently is not in the scope of this paper.)
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Fig. 2. Ground truth (top three panels) of the normalized speech sig-
nals of three speakers (one male and two female), and their mixture
at one of the microphones (bottom panel).

4.2. Test Results

Fig. 3 provides the ground truth locations, estimated speaker loca-
tions, pitch and separated sound signals. The top panel depicts the
ground truth locations in straight line segments, our estimated loca-
tions in symbol “⇥” and tracking results in solid colored symbols.
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3.1. Multi-feature GLMB Recursion: Update

If the current RFS prediction density is a �-GLMB of the form (12),
using the current multi-feature observation Z as defined in (11), the
posterior density is a �-GLMB [7], i.e.
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where ⇥(I) denotes the subset of current association maps with do-
main I , and standard derivations of !(I,⇠,✓)(Z) and p

(⇠,✓)(x, `|Z) are
provided in [7]. (For denotation simplicity we drop the subscript k
here.)

Following the definitions in [7], clutter is assumed Poisson with
an average of 0.044 clutter points per scan, i.e. the localization
method in Section 2.1 produces almost clean location estimates in
low reverberation. The probability of a target state being detected is
pD = 0.98N (F0; 280, 30

2)/N (280; 280, 302).
In this paper, g(z✓(`)|x, `) denotes the multi-feature likeli-

hood for the measurement z✓(`) 2 Z being generated by (x, `) =
((⇣, F0, s), `), where s = ŝ✓(`) after update. Sound separation for
respective speakers over time is achieved by concatenating sound
signals s of the same target label. Assuming that the transition-
ing features (location and pitch) are statistically independent, the
proposed multi-feature likelihood function is:

g(z✓(`)|x, `) , g(&̂✓(`)|⇣, `) · g(F̂0✓(`)|F0, `), (14)
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) in this paper. �& = 2� and �F0 = 10Hz
are the standard deviations of the observation of the location and
pitch, respectively. After update, the maximum a posteriori (MAP)
estimate of the cardinality (number of speakers) is chosen, and the
highest weighted corresponding hypothesis is used for the multi-
target multi-feature tracking results.

3.2. Multi-feature GLMB Recursion: Prediction

If the current RFS filtering density from its previous update step is a
�-GLMB of the form (12), the prediction density to the next time is
a �-GLMB given as [7]
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[7]. [·]+ stands for prediction. The survival probability is pS(·, `) =
0.75.

Using the assumption that the transitioning features are statis-
tically independent, the proposed state transition function for the
multi-feature GLMB is:

f(x|·, `) = 1x(⇣) · f(⇣|·, `) · 1x(F0) · f(F0|·, `), (16)

where the inclusion function is defined as
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0, otherwise. (17)

We assume the motion of the speaker DOA follows the Langevin
process [19, 1, 3], which is also a first-order Markov model:
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⇣ = [&, &̇]T , &̇ is the velocity of DOA & . t� = 0.1s is the time step,
w⇣ follows the normal distribution, i.e. w⇣ ⇠ N (·; 0, 1). Model
parameters �⇣ = 0.2s�1 and �⇣ = 10�/s are respectively the rate
constant and the steady-state root-mean-square velocity for the ran-
dom motions of speakers.

We also assume that the pitch of a speaker follows a simple nor-
mal distribution around its previous estimate. Thus the state transi-
tion function for pitch is:
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where �̃F0 = 30Hz is the standard deviation for the transition of
pitch. Adaptive measurement-driven target births are generated [8,
20]. New target births are assumed to follow normal distributions
around the previous measurement, where the standard deviation is
5� for the DOA, and 30Hz for the pitch, respectively. The non-
stationary sound signals are treated as the non-transitioning feature,
thus targets carry no sound in prediction until the next update step of
the multi-feature GLMB recursion.

4. NUMERICAL STUDIES

4.1. Experiment Setup

This section verifies and demonstrates the performance of the pro-
posed multi-feature GLMB framework in the scenario of three
speakers.

The setup is as shown in the left panel of Fig. 1, where the room
dimensions are 3.4(W )⇥ 7.6(L)⇥ 2.7(H)m3, the microphone ar-
ray locates at [1.2, 3.9, 1.5]m, which is composed of M = 8 micro-
phones evenly distributed on a circle with a diameter of 0.1m. For
clarity, we choose an anechoic scenario that Speaker A (male) and
B (female) both locate at DOA of 232.1� while Speaker C (female)
moves from DOA of 40� to 75�, with respect to the center of the
microphone array. Fig. 2 plots the normalized ground truth speech
signals of respective speakers as well as their mixture captured by
one of the microphones. Obviously, using location (DOA) informa-
tion alone, standard implementations of tracking methods can only
take Speaker A and B as a same speaker. (The scenario when closely
located speakers talk concurrently is not in the scope of this paper.)
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Fig. 2. Ground truth (top three panels) of the normalized speech sig-
nals of three speakers (one male and two female), and their mixture
at one of the microphones (bottom panel).

4.2. Test Results

Fig. 3 provides the ground truth locations, estimated speaker loca-
tions, pitch and separated sound signals. The top panel depicts the
ground truth locations in straight line segments, our estimated loca-
tions in symbol “⇥” and tracking results in solid colored symbols.
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where ⇥(I) denotes the subset of current association maps with do-
main I , and standard derivations of !(I,⇠,✓)(Z) and p

(⇠,✓)(x, `|Z) are
provided in [7]. (For denotation simplicity we drop the subscript k
here.)

Following the definitions in [7], clutter is assumed Poisson with
an average of 0.044 clutter points per scan, i.e. the localization
method in Section 2.1 produces almost clean location estimates in
low reverberation. The probability of a target state being detected is
pD = 0.98N (F0; 280, 30

2)/N (280; 280, 302).
In this paper, g(z✓(`)|x, `) denotes the multi-feature likeli-

hood for the measurement z✓(`) 2 Z being generated by (x, `) =
((⇣, F0, s), `), where s = ŝ✓(`) after update. Sound separation for
respective speakers over time is achieved by concatenating sound
signals s of the same target label. Assuming that the transition-
ing features (location and pitch) are statistically independent, the
proposed multi-feature likelihood function is:

g(z✓(`)|x, `) , g(&̂✓(`)|⇣, `) · g(F̂0✓(`)|F0, `), (14)

where g(&̂✓(`)|⇣, `) = N (&̂✓(`); ⇣,�
2
& ) and g(F̂0✓(`)|F0, `) =

N (F̂0✓(`);F0,�
2
F0

) in this paper. �& = 2� and �F0 = 10Hz
are the standard deviations of the observation of the location and
pitch, respectively. After update, the maximum a posteriori (MAP)
estimate of the cardinality (number of speakers) is chosen, and the
highest weighted corresponding hypothesis is used for the multi-
target multi-feature tracking results.

3.2. Multi-feature GLMB Recursion: Prediction

If the current RFS filtering density from its previous update step is a
�-GLMB of the form (12), the prediction density to the next time is
a �-GLMB given as [7]

⇡+(X+) = �(X+)
X

(I+,⇠)2F(L+)⇥⌅

!
(I+,⇠)
+ �I+(L(X+))

h
p
(⇠)
+

iX+
,

(15)
where standard derivations of !(I+,⇠)

+ and p
(⇠)
+ (x, `) can be found in

[7]. [·]+ stands for prediction. The survival probability is pS(·, `) =
0.75.

Using the assumption that the transitioning features are statis-
tically independent, the proposed state transition function for the
multi-feature GLMB is:

f(x|·, `) = 1x(⇣) · f(⇣|·, `) · 1x(F0) · f(F0|·, `), (16)

where the inclusion function is defined as

1Y (X) ,
⇢

1, if X is included in Y

0, otherwise. (17)

We assume the motion of the speaker DOA follows the Langevin
process [19, 1, 3], which is also a first-order Markov model:

f(⇣|⇣0, `) =

1 t�

0 e
��⇣ ·t�

�
· ⇣0 +w⇣ ·


0

�⇣

p
1� e

�2�⇣ ·t�

�
, (18)

⇣ = [&, &̇]T , &̇ is the velocity of DOA & . t� = 0.1s is the time step,
w⇣ follows the normal distribution, i.e. w⇣ ⇠ N (·; 0, 1). Model
parameters �⇣ = 0.2s�1 and �⇣ = 10�/s are respectively the rate
constant and the steady-state root-mean-square velocity for the ran-
dom motions of speakers.

We also assume that the pitch of a speaker follows a simple nor-
mal distribution around its previous estimate. Thus the state transi-
tion function for pitch is:

f(F0|F0
0
, `) = N (F0;F0

0
, �̃

2
F0

), (19)

where �̃F0 = 30Hz is the standard deviation for the transition of
pitch. Adaptive measurement-driven target births are generated [8,
20]. New target births are assumed to follow normal distributions
around the previous measurement, where the standard deviation is
5� for the DOA, and 30Hz for the pitch, respectively. The non-
stationary sound signals are treated as the non-transitioning feature,
thus targets carry no sound in prediction until the next update step of
the multi-feature GLMB recursion.

4. NUMERICAL STUDIES

4.1. Experiment Setup

This section verifies and demonstrates the performance of the pro-
posed multi-feature GLMB framework in the scenario of three
speakers.

The setup is as shown in the left panel of Fig. 1, where the room
dimensions are 3.4(W )⇥ 7.6(L)⇥ 2.7(H)m3, the microphone ar-
ray locates at [1.2, 3.9, 1.5]m, which is composed of M = 8 micro-
phones evenly distributed on a circle with a diameter of 0.1m. For
clarity, we choose an anechoic scenario that Speaker A (male) and
B (female) both locate at DOA of 232.1� while Speaker C (female)
moves from DOA of 40� to 75�, with respect to the center of the
microphone array. Fig. 2 plots the normalized ground truth speech
signals of respective speakers as well as their mixture captured by
one of the microphones. Obviously, using location (DOA) informa-
tion alone, standard implementations of tracking methods can only
take Speaker A and B as a same speaker. (The scenario when closely
located speakers talk concurrently is not in the scope of this paper.)
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Fig. 2. Ground truth (top three panels) of the normalized speech sig-
nals of three speakers (one male and two female), and their mixture
at one of the microphones (bottom panel).

4.2. Test Results

Fig. 3 provides the ground truth locations, estimated speaker loca-
tions, pitch and separated sound signals. The top panel depicts the
ground truth locations in straight line segments, our estimated loca-
tions in symbol “⇥” and tracking results in solid colored symbols.



Test Scenario

● Set-up 
○ UCA with 8 microphones, diameter 0.1m 
○ 3 speakers (static and moving) 

● Metrics: OSPA, PEASS
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Test Scenario

● Mixture of speech signals
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Test Scenario

● Separated speech signals
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Test Scenario

● Test results - OSPA for DOAs
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Fig. 3. Joint tracking and separation results from proposed methods.
Top two panels show the estimation and tracking results of speak-
ers’ location and pitch. Bottom three panels show the corresponding
separated sound signals.

Different colored symbols represent different speakers. From the
ground truth, there are two separate lines of locations. Thus us-
ing location information alone, apparently the tracking filters can
only detect two speakers. However, by considering also the pitch in-
formation, our proposed method has correctly found three speakers.
The second top panel shows the pitch estimates and tracking results
associated with the location estimates and tracking results in the top
panel. We can see in these two panels that the associated location
and pitch estimates have spurious errors that do not follow consis-
tent kinematic patterns over time, thus are filtered by the GLMB
tracker. We can also see that the tracking filter requires two time
steps to confirm one new track. This is reasonable as we use the
measurement-driven birth model [20] for adaptive target births. The
pitch estimates of different speakers fluctuate at different levels over
time, and there is a significant jump in pitch level at time of around
1.4s, which helps the tracker to confirm a new speaker starting at
1.5s. The bottom three panels of Fig. 3 plots the extracted sound
signals for respective speakers. Comparing with Fig. 2, we can see
that most of speech signals are recovered for each speaker. Thus our
proposed multi-feature GLMB tracking-and-separation method can
jointly track and separate multiple speakers.

The location tracking accuracy is evaluated using the Optimal
Sub-pattern Assignment (OSPA) metric [21], with the cut-off pa-
rameter of 5� and the order parameter of 1. Thus cardinality estima-
tion error of 1 out of 2 contributes to an OSPA error of 5

2

�. Fig. 4
shows that the overall OSPA location tracking errors are within 5�,
and the multi-feature GLMB achieves comparable location tracking
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Fig. 4. OSPA measure of the DOA tracking results, i.e. the overall
OSPA errors (top), the contribution of DOA errors (middle), and the
contribution of cardinality errors (bottom).

accuracy with the standard GLMB.
The quality of the separated sound signals are evaluated using

the PEASS metric [22], compared with the ground truth signals. The
results are provided in Tab. 1. We also compare the performance
with two blind speech separation methods, i.e. the Underdetermined
Convolutive Blind Source Separation (UCBSS) [12] and the Degen-
erative Unmixing Estimation Technique (DUET) [9]. We can see
that using the blind separation techniques, the speaker 1 and speaker
2 are regarded as one speaker. Thus the separated sound signals
for speaker < 1, 2 > are compared with the mixture of Speaker A
and Speaker B. In general the DUET and UCBSS methods obtain
close Overall Perceptual Scores (OPS). The DUET method seems
to provide more consistent performance than UCBSS when com-
paring the Target-related Perceptual Score (TPS) and the Artifacts-
related Perceptual Scores (APS), but UCBSS has significantly higher
Interference-related Perceptual Score (IPS) than DUET. Overall, our
proposed method provides consistent and superior performance for
the three separated speakers, according to all the perceptual scores.

Table 1. PEASS evaluation results for speech separation, using the
proposed method, and the UCBSS, DUET methods.

Method Speaker OPS TPS IPS APS

Proposed 1 48.75 57.03 71.19 49.11
2 32.69 29.35 72.06 35.61
3 36.02 35.73 65.65 37.71

UCBSS < 1, 2 > 18.66 45.84 43.21 24.33
3 25.00 6.10 83.97 3.50

DUET < 1, 2 > 18.73 38.82 16.38 50.43
3 24.97 51.16 32.40 44.32

5. CONCLUSION AND FUTURE WORK

This paper presents the novel systematic implementation of multi-
feature GLMB tracking method that not only can jointly track mul-
tiple speakers and separate sound signals from speech mixtures, but
also resolve the ambiguity of location tracking when speakers locate
spatially close. It treats the vector of candidate speaker location,
pitch and sound as a multi-feature target observation and jointly ex-
tracts and tracks these features in the Bayes RFS recursion. Exper-
imental results demonstrate encouraging results in the studied sce-
nario. For future work, further improvement is still possible, e.g.
by applying more complicated microphone setup, selecting different
speaker features, or improving the feature extraction methods.
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Fig. 3. Joint tracking and separation results from proposed methods.
Top two panels show the estimation and tracking results of speak-
ers’ location and pitch. Bottom three panels show the corresponding
separated sound signals.

Different colored symbols represent different speakers. From the
ground truth, there are two separate lines of locations. Thus us-
ing location information alone, apparently the tracking filters can
only detect two speakers. However, by considering also the pitch in-
formation, our proposed method has correctly found three speakers.
The second top panel shows the pitch estimates and tracking results
associated with the location estimates and tracking results in the top
panel. We can see in these two panels that the associated location
and pitch estimates have spurious errors that do not follow consis-
tent kinematic patterns over time, thus are filtered by the GLMB
tracker. We can also see that the tracking filter requires two time
steps to confirm one new track. This is reasonable as we use the
measurement-driven birth model [20] for adaptive target births. The
pitch estimates of different speakers fluctuate at different levels over
time, and there is a significant jump in pitch level at time of around
1.4s, which helps the tracker to confirm a new speaker starting at
1.5s. The bottom three panels of Fig. 3 plots the extracted sound
signals for respective speakers. Comparing with Fig. 2, we can see
that most of speech signals are recovered for each speaker. Thus our
proposed multi-feature GLMB tracking-and-separation method can
jointly track and separate multiple speakers.

The location tracking accuracy is evaluated using the Optimal
Sub-pattern Assignment (OSPA) metric [21], with the cut-off pa-
rameter of 5� and the order parameter of 1. Thus cardinality estima-
tion error of 1 out of 2 contributes to an OSPA error of 5

2

�. Fig. 4
shows that the overall OSPA location tracking errors are within 5�,
and the multi-feature GLMB achieves comparable location tracking
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Fig. 4. OSPA measure of the DOA tracking results, i.e. the overall
OSPA errors (top), the contribution of DOA errors (middle), and the
contribution of cardinality errors (bottom).

accuracy with the standard GLMB.
The quality of the separated sound signals are evaluated using

the PEASS metric [22], compared with the ground truth signals. The
results are provided in Tab. 1. We also compare the performance
with two blind speech separation methods, i.e. the Underdetermined
Convolutive Blind Source Separation (UCBSS) [12] and the Degen-
erative Unmixing Estimation Technique (DUET) [9]. We can see
that using the blind separation techniques, the speaker 1 and speaker
2 are regarded as one speaker. Thus the separated sound signals
for speaker < 1, 2 > are compared with the mixture of Speaker A
and Speaker B. In general the DUET and UCBSS methods obtain
close Overall Perceptual Scores (OPS). The DUET method seems
to provide more consistent performance than UCBSS when com-
paring the Target-related Perceptual Score (TPS) and the Artifacts-
related Perceptual Scores (APS), but UCBSS has significantly higher
Interference-related Perceptual Score (IPS) than DUET. Overall, our
proposed method provides consistent and superior performance for
the three separated speakers, according to all the perceptual scores.

Table 1. PEASS evaluation results for speech separation, using the
proposed method, and the UCBSS, DUET methods.

Method Speaker OPS TPS IPS APS

Proposed 1 48.75 57.03 71.19 49.11
2 32.69 29.35 72.06 35.61
3 36.02 35.73 65.65 37.71

UCBSS < 1, 2 > 18.66 45.84 43.21 24.33
3 25.00 6.10 83.97 3.50

DUET < 1, 2 > 18.73 38.82 16.38 50.43
3 24.97 51.16 32.40 44.32

5. CONCLUSION AND FUTURE WORK

This paper presents the novel systematic implementation of multi-
feature GLMB tracking method that not only can jointly track mul-
tiple speakers and separate sound signals from speech mixtures, but
also resolve the ambiguity of location tracking when speakers locate
spatially close. It treats the vector of candidate speaker location,
pitch and sound as a multi-feature target observation and jointly ex-
tracts and tracks these features in the Bayes RFS recursion. Exper-
imental results demonstrate encouraging results in the studied sce-
nario. For future work, further improvement is still possible, e.g.
by applying more complicated microphone setup, selecting different
speaker features, or improving the feature extraction methods.



Future Works

● Reverberation and noise 
● Robust feature extraction methods 
○ E.g. pitch, location, sound extraction 
● Other tracking techniques 
○ E.g. track-before-detect, compare MHT, JPDA, etc.
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Thanks!  
Questions and Answers

● Thanks to the reviewers’ helpful comments.  
● Thank you all for attending. 
● What’s the main idea of this work? 
○ Using the multi-feature GLMB framework, to jointly separate 

and track multiple features of speakers. 
● Is the localization (MCC-PHAT) reverberation 

robust? 
○ The short answer is yes.  
● Other questions?
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