Computationally Efficient Waveform Design in Spectrally Dense Environment

Markus Yli-Niemi \& Sergiy A. Vorobyov
markus.yli-niemi@aalto.fi
sergiy.vorobyov@aalto.fi
July 5, 2018

Introduction

- Recently in radar systems waveform design in spectrally dense environment [1] has aroused noticeable interest
- Solution methods exist for the problem (see e.g. [2], [3]) but they are computationally inefficient
- When radar system operates at GHz level radar code dimension becomes large, need for computationally efficient solution methods
- Here we develop new computationally efficient method to design transmitter waveform in spectrally dense environment
- New method is based on ADMM algorithm [4] alongside Majorization-Minimization step [5]

Problem formulation

- Similarly to [3], denote transmitted fast-time radar code vector by \mathbf{c} and fast-time observation signal by \mathbf{v} :

$$
\begin{equation*}
\mathbf{c}=(c[1], c[2], \ldots, c[N])^{T}, \mathbf{v}=\alpha \mathbf{c}+\mathbf{n}, \mathbf{c}, \mathbf{v} \in \mathbb{C}^{N}, \alpha \in \mathbb{C} \tag{1}
\end{equation*}
$$

- Matched filtering \mathbf{v} with filter $\mathbf{h} \in \mathbb{C}^{N}$ yields $y=\mathbf{h}^{H} \mathbf{v}$. Write $y=y_{s}+y_{n}$, where $y_{s}=\alpha \mathbf{h}^{H} \mathbf{c}$ and $y_{n}=\mathbf{h}^{H} \mathbf{n}$. SINR is given as:

$$
\begin{equation*}
\text { SINR }=\frac{\left|y_{s}\right|^{2}}{\left|y_{n}\right|^{2}}=\frac{|\alpha|^{2}\left|\mathbf{h}^{H} \mathbf{c}\right|^{2}}{\left|\mathbf{h}^{H} \mathbf{n}\right|^{2}}=\frac{|\alpha|^{2}\left|\mathbf{h}^{H} \mathbf{c}\right|^{2}}{\mathbf{h}^{H} \underbrace{\mathbf{n n}^{H}}_{=\mathbf{M}} \mathbf{h}} \tag{2}
\end{equation*}
$$

- To maximize SINR w.r.t. \mathbf{h}, we choose $\mathbf{h}=\mathbf{M}^{-1} \mathbf{c}$, which yields SINR $=|\alpha|^{2} \mathbf{c}^{H} \mathbf{M}^{-1} \mathbf{c}$

Problem formulation

- Introduce constrained bandwidths $\left\{\Omega_{k}\right\}_{k \in\{1,2, \ldots, K\}}$, where $\Omega_{k}=\left[f_{1}^{k}, f_{2}^{k}\right]$. The energy \mathbf{c} radiates to constrained bandwidths is (see e.g. [3]):

$$
\begin{equation*}
\sum_{k=1}^{K} w_{k} \int_{\Omega_{k}}\left|\mathcal{F}_{\mathbb{N}}\{\mathbf{c}\}\right|^{2} d f=\mathbf{c}^{H} \mathbf{R}_{\mid} \mathbf{c} \tag{3}
\end{equation*}
$$

where $\left\{w_{k}\right\}_{k=1}^{K}$ are non-negative weights, $\mathcal{F}_{\mathbb{N}}\{\mathbf{c}\}$ stands for the discrete-time Fourier transform of \mathbf{c} given as $\mathcal{F}_{\mathbb{N}}\{\mathbf{c}\} \triangleq \sum_{k=1}^{N} c[k] e^{-j 2 \pi k f}$, and $\mathbf{R}_{\boldsymbol{l}} \triangleq \sum_{k=1}^{K} w_{k} \mathbf{R}_{1}^{k}$ with $\left[\mathbf{R}_{1}^{k}\right]_{m, I}=\left(e^{j 2 \pi f_{2}^{k}(m-l)}-e^{j 2 \pi f_{1}^{k}(m-l)}\right) / e^{j 2 \pi(m-I)}$, if $m \neq I$, and $\left[\mathbf{R}_{1}^{k}\right]_{m, l}=f_{2}^{k}-f_{1}^{k}$, if $m=l$.

Problem formulation

- If radar code energy $\|\mathbf{c}\|^{2}$ is unit constrained and required to be in similarity region with reference code \mathbf{c}_{0} alongside radiation energy constraint $\mathbf{c}^{H} \mathbf{R}_{\mid} \mathbf{c} \leq E_{l}$, SINR maximization problem can be written:

$$
\mathcal{P}_{1}: \begin{cases}\underset{\mathbf{c}}{\max } & |\alpha|^{2} \mathbf{c}^{H} \mathbf{M}^{-1} \mathbf{c} \tag{4a}\\ \text { s.t. : } & \|\mathbf{c}\|^{2}=1 \\ & \mathbf{c}^{H} \mathbf{R}_{l} \mathbf{c} \leq E_{l} \\ & \left\|\mathbf{c}-\mathbf{c}_{0}\right\|^{2} \leq \epsilon\end{cases}
$$

Problem formulation

- \mathcal{P}_{1} is equal to:

$$
\mathcal{P}_{1}^{(1)}: \begin{cases}\min _{\mathbf{c}} & -\mathbf{c}^{H} \mathbf{R} \mathbf{c} \tag{5a}\\ \text { s.t. : } & \|\mathbf{c}\|^{2}=1 \\ & \mathbf{c}^{H} \mathbf{R}_{\mid} \mathbf{c} \leq E_{l} \\ & \left\|\mathbf{c}-\mathbf{c}_{0}\right\|^{2} \leq \epsilon\end{cases}
$$

where c, $\mathbf{c}_{0} \in \mathbb{C}^{N}$ and $\mathbf{R}_{1}, \mathbf{R}=\mathbf{M}^{-1} \in \mathbb{C}^{N \times N}$

Majorization-Minimization step

- Due to independence of real and imaginary components we can write $\mathbf{c}, \mathbf{c}_{0}, \mathbf{R}$ and \mathbf{R}_{1} as:

$$
\mathbf{R}=\left[\begin{array}{cc}
\operatorname{Re}\{\mathbf{R}\} & -\operatorname{Im}\{\mathbf{R}\} \\
\operatorname{Im}\{\mathbf{R}\} & \operatorname{Re}\{\mathbf{R}\}
\end{array}\right], \mathbf{c}=\left[\begin{array}{c}
\operatorname{Re}\{\mathbf{c}\} \\
\operatorname{Im}\{\mathbf{c}\}
\end{array}\right] \text { and } \mathbf{c}_{0}=\left[\begin{array}{c}
\operatorname{Re}\left\{\mathbf{c}_{0}\right\} \\
\operatorname{Im}\left\{\mathbf{c}_{0}\right\}
\end{array}\right] .
$$

- Let us use use surrogate $\mathbf{Q}=\mu \mathbf{I}-\mathbf{R} \succeq 0, \mu>0$ to upper-bound objective. We get real-valued optimization problem \mathcal{P}_{2} :

$$
\mathcal{P}_{2}: \begin{cases}\min _{\mathbf{c}} & \mathbf{c}^{\top} \mathbf{Q} \mathbf{c} \tag{6a}\\ \text { s.t. : } & \|\mathbf{c}\|^{2}=1 \\ & \mathbf{c}^{\top} \mathbf{R}_{\mid} \mathbf{c} \leq E_{1} \\ & \left\|\mathbf{c}-\mathbf{c}_{0}\right\| \leq \epsilon\end{cases}
$$

where $\mathbf{c}, \mathbf{c}_{0} \in \mathbb{R}^{2 N}$ and $\mathbf{Q}, \mathbf{R}_{\mathrm{I}} \in \mathbb{R}^{2 N \times 2 N}$

Apply ADMM to \mathcal{P}_{2}

- To allow separability of $\mathbf{c}^{T} \mathbf{Q c}$, let us introduce slack variable \mathbf{z} with constraint $\mathbf{c}=\mathbf{z}$. Augmented Lagrangian $L_{\rho}(\mathbf{c}, \mathbf{z}, \boldsymbol{\lambda})$ for minimization problem $\min _{\mathbf{c}} \mathbf{c}^{\top} \mathbf{Q} \mathbf{c}$ s.t.: $\mathbf{c}=\mathbf{z}$:

$$
\begin{equation*}
L_{\rho}(\mathbf{c}, \mathbf{z}, \boldsymbol{\lambda})=\mathbf{c}^{T} \mathbf{Q} \mathbf{c}+\boldsymbol{\lambda}^{T}(\mathbf{c}-\mathbf{z})+\frac{\rho}{2}\|\mathbf{c}-\mathbf{z}\|^{2} \tag{7}
\end{equation*}
$$

- ADMM-steps for \mathcal{P}_{2} :

$$
\left\{\begin{array}{l}
\mathbf{c}_{k+1}=\underset{\mathbf{c}}{\arg \min } L_{\rho}\left(\mathbf{c}, \mathbf{z}_{k}, \boldsymbol{\lambda}_{k}\right) \tag{8a}\\
\mathbf{z}_{k+1}=\underset{\mathbf{z}}{\arg \min } L_{\rho}\left(\mathbf{c}_{k+1}, \mathbf{z}, \boldsymbol{\lambda}_{k}\right) \\
\boldsymbol{\lambda}_{k+1}=\boldsymbol{\lambda}_{k}+\rho\left(\mathbf{c}_{k+1}-\mathbf{z}_{k+1}\right)
\end{array}\right.
$$

- Next c-variable update and \mathbf{z}-variable update are solved.

c-variable update

- c-variable update (8a) can be written as:

$$
\begin{align*}
\mathbf{c}_{k+1} & =\underset{\mathbf{c}}{\arg \min } L_{\rho}\left(\mathbf{c}, \mathbf{z}_{k}, \boldsymbol{\lambda}_{k}\right)=\underset{\mathbf{c}}{\arg \min }\left\{\mathbf{c}^{T} \mathbf{Q} \mathbf{c}+(\boldsymbol{\lambda}-\rho \mathbf{z})^{T} \mathbf{c}\right\} \\
& =\underset{\mathbf{c}}{\arg \min } h(\mathbf{c}) \quad \mid \text { s.t. }\|\mathbf{c}\|^{2}=1,\left\|\mathbf{c}-\mathbf{c}_{0}\right\|^{2} \leq \epsilon \tag{9}
\end{align*}
$$

- Objective function $h(\mathbf{c})$ is continuously differentiable and $\nabla_{\mathbf{c}} h$ is L-Lipschitz continuous. To minimize $h(\mathbf{c})$ we use gradient descent:

$$
\begin{equation*}
\mathbf{c}_{k+1}=\mathbf{c}_{k}-\frac{1}{L}\left(\left(\mathbf{Q}+\mathbf{Q}^{T}\right) \mathbf{c}_{k}+(\boldsymbol{\lambda}-\rho \mathbf{z})\right) \tag{10}
\end{equation*}
$$

where Lipschitz constant can be found by noticing:

$$
\begin{aligned}
\left|\nabla_{\mathbf{c}} h(\boldsymbol{\kappa})-\nabla_{\mathbf{c}} h(\mathbf{c})\right| & =\left|\left(\mathbf{Q}+\mathbf{Q}^{T}\right)(\boldsymbol{\kappa}-\mathbf{c})\right| \leq L|\boldsymbol{\kappa}-\mathbf{c}| \\
& \Rightarrow\left|\sum_{\rho=1}^{2 N}\left(\mathbf{Q}_{[i, p]}+\mathbf{Q}_{[i, p]}^{T}\right)\right| \leq L, \forall i=1, \cdots, 2 N
\end{aligned}
$$

c-variable update

- Gradient descent yields updated \mathbf{c} that has $\|\mathbf{c}\|_{2}^{2} \neq 1$ and possibly $\left\|\mathbf{c}-\mathbf{c}_{0}\right\| \geq \epsilon$.
- Denote $\Theta=\left\{\mathbf{c} \in \mathbb{R}^{2 N} \mid\|\mathbf{c}\|^{2}=1\right.$ and $\left\|\mathbf{c}-\mathbf{c}_{0}\right\|^{2} \leq \epsilon$, for some $\left.\mathbf{c}_{0} \in \mathbb{R}^{2 N}\right\}$
- Cheap way to project c back to unitary region is to divide updated \mathbf{c} by its L^{2}-norm:

$$
\begin{equation*}
\hat{\mathbf{c}}_{k+1}=\mathbf{c}_{k+1} /\left\|\mathbf{c}_{k+1}\right\| \tag{11}
\end{equation*}
$$

c-variable update

- Next $\hat{\mathbf{c}}_{k+1}$ is rotated to region Θ with steps introduced in Algorithm 1.
Algorithm 1: Rotate c toward
c_{0} as long as region $\left\|c-c_{0}\right\| \leq$ ϵ is reached
1 function RotateVector(c, $\left.\mathbf{c}_{0}, \alpha^{\prime}, \epsilon\right)$;
Input : c, $\mathbf{c}_{0}, \alpha^{\prime}$ and ϵ
Output : c
2 while $\left\|\boldsymbol{c}-\boldsymbol{c}_{0}\right\|>\epsilon$ do
$3 \quad \widetilde{\mathbf{c}}=\mathbf{c}_{0}-\operatorname{proj}_{\mathbf{c}}\left(\mathbf{c}_{0}\right)=\mathbf{c}_{0}-\frac{\mathbf{c}_{0}^{H}, \mathbf{c}}{\|\mathbf{c}\|^{2}} \mathbf{c}$;
$4 \quad \mathbf{e}=\frac{\tilde{\mathfrak{c}}}{\|\tilde{\mathbf{c}}\|}, \mathbf{c}^{*}=\mathbf{c}+\alpha^{\prime} \mathbf{e}$,

$$
\mathbf{c}=\frac{\mathbf{c}^{*}}{\left\|\mathbf{c}^{*}\right\|}
$$

5 end

c-variable update

- The combination of steps (10), (11) and Algorithm 1 can be shown to be solution steps to projected gradient step for problem $\min _{\mathbf{c}} h(\mathbf{c})$ subject to $\mathbf{c} \in \Theta$:

$$
\left\{\begin{array}{l}
\mathbf{y}_{k+1}=\mathbf{c}_{k}-\frac{1}{L} \nabla h\left(\mathbf{c}_{k}\right) \tag{12a}\\
\mathbf{c}_{k+1}=\min _{\mathbf{c} \in \Theta}\left\|\mathbf{y}_{k+1}-\mathbf{c}\right\| .
\end{array}\right.
$$

- By using angular coordinates $\phi \in \mathbb{R}^{2 N-1}$ step (12b) can be written as:

$$
\left\{\begin{array}{l}
\phi_{k+1}=\underset{\phi \in \Omega}{\arg \min }\left\|\phi^{*}-\phi\right\| \tag{13a}\\
\mathbf{c}_{k+1}=\mathbf{c}\left(\phi_{k+1}\right) .
\end{array}\right.
$$

where $\Omega=\left\{\phi \in \mathbb{R}^{2 N-1} \mid\left\|\mathbf{c}(\phi)-\mathbf{c}_{0}(\phi)\right\|^{2} \leq \epsilon\right\}$ and $\phi^{*}=\arg \min _{\phi} h(\mathbf{c}(\phi))$.

z-variable update

- z-variable update (8b) can be written as:

$$
\begin{align*}
\mathbf{z}_{k+1} & =\underset{\mathbf{z}}{\arg \min } L_{\rho}\left(\mathbf{c}_{k+1}, \mathbf{z}, \boldsymbol{\lambda}_{k}\right) \\
& =\underset{\mathbf{z}}{\arg \min }\left\{\boldsymbol{\lambda}^{T}(\mathbf{c}-\mathbf{z})+\frac{\rho}{2}\|\mathbf{c}-\mathbf{z}\|^{2}\right\} \\
& \left.=\underset{\mathbf{z}}{\arg \min }\left\{\left\|\mathbf{z}-\left(\mathbf{c}+\frac{1}{\rho} \boldsymbol{\lambda}\right)\right\|^{2}\right\} \right\rvert\, \text { s.t. } \mathbf{z}^{T} \mathbf{R}_{\mid} \mathbf{z} \leq E_{l} . \tag{14}
\end{align*}
$$

- Lagrangian for (14) is given as:

$$
\begin{equation*}
L(\mathbf{z}, \gamma)=\left\|\mathbf{z}-\left(\mathbf{c}+\frac{1}{\rho} \boldsymbol{\lambda}\right)\right\|^{2}+\gamma\left(\mathbf{z}^{T} \mathbf{R}_{\mid} \mathbf{z}-E_{l}\right) \tag{15}
\end{equation*}
$$

z-variable update

- Karush-Kuhn-Tucker (KKT) conditions for the minimization problem (14):

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{z}} L\left(\mathbf{z}^{*}, \gamma^{*}\right)=0 \\
\gamma^{*} \geq 0 \\
\gamma^{*}\left(\left(\mathbf{z}^{*}\right)^{T} \mathbf{R}_{\mathbf{l}} \mathbf{z}^{*}-E_{\mathrm{l}}\right)=0 \tag{16d}\\
\left(\mathbf{z}^{T} \mathbf{R}_{\mathbf{l}} \mathbf{z}-E_{\mathrm{l}}\right) \leq 0 \\
\nabla_{\mathbf{z z}} L\left(\mathbf{z}^{*}, \gamma^{*}\right) \succeq 0
\end{array}\right.
$$

- By (16a) and (16c):

$$
\begin{align*}
& \nabla_{\mathbf{z}} L\left(\mathbf{z}^{*}, \gamma^{*}\right)=0 \Rightarrow\left(\mathbf{I}+\gamma^{*} \mathbf{R}_{\mathbf{l}}\right) \mathbf{z}^{*}=\mathbf{c}+\frac{1}{\rho} \boldsymbol{\lambda} \tag{17}\\
& \left(\mathbf{z}^{*}\right)^{T} \mathbf{R}_{\mathbf{l}} \mathbf{z}^{*}-E_{l}=0 \tag{18}
\end{align*}
$$

where \mathbf{z}^{*} and γ^{*} denotes critical points of Lagrangian $L(\mathbf{z}, \gamma)$.

z-variable update

- Now (17) can be written as iteration step (19):

$$
\begin{align*}
\mathbf{z}_{k+1} & =\left(\mathbf{I}+\gamma_{k+1} \mathbf{R}_{\mathbf{I}}\right)^{-1}\left(\mathbf{c}+\frac{1}{\rho} \boldsymbol{\lambda}\right) \\
& =\left(\mathbf{I}+\sum_{i=1}^{2 N} \frac{\gamma_{k+1} \sigma_{i}}{1+\gamma_{k+1} \sigma_{i}} \mathbf{p}_{i} \mathbf{p}_{i}^{T}\right)\left(\mathbf{c}+\frac{1}{\rho} \boldsymbol{\lambda}\right) . \tag{19}
\end{align*}
$$

- $\gamma_{k+1}>0$ can be found as the solution to (18):

$$
\begin{equation*}
\mathbf{z}_{k+1}^{T} \mathbf{R}_{\mid} \mathbf{z}_{k+1}=E_{l} \Leftrightarrow \sum_{i=1}^{2 N} \frac{a_{i} \sigma_{i}}{\left(1+\gamma \sigma_{i}\right)^{2}}-E_{l}=0 \tag{20}
\end{equation*}
$$

where $a_{i}=\left(\mathbf{p}_{i}^{T}\left(\mathbf{c}+\frac{1}{\rho} \boldsymbol{\lambda}\right)\right)^{2}, \sigma_{i}$ is i 'th eigenvalue and \mathbf{p}_{i} corresponding eigenvector of \mathbf{R}_{\mid}. Equation (20) can be efficiently solved by using Newton's method.

Proposed algorithm

- Collect c and z-variable updates to get final algorithm:

Algorithm 2: MM-algorithm
1 function $\operatorname{MM}\left(\mathbf{Q}, \mathbf{c}_{0}, \mathbf{R}_{/}, E_{l}, \epsilon, K^{\prime}\right)$;
Input $\quad: \mathbf{Q}=\mu \mathbf{I}-\mathbf{R} \succeq 0, \mathbf{c}_{0}, \mathbf{R}_{l}, E_{l}, \epsilon$ and K^{\prime}
Output : c
2 Initialize c, z and $\boldsymbol{\lambda}$;
3 for $k=1, k \leq K^{\prime}, k++\mathbf{d o}$
$4 \quad \hat{\mathbf{c}}_{k+1}=\mathbf{c}_{k}-\frac{1}{L}\left(\left(\mathbf{Q}+\mathbf{Q}^{T}\right) \mathbf{c}_{k}+(\boldsymbol{\lambda}-\rho \mathbf{z})\right)$;
5
6
$7 \quad$ Solve $\sum_{i=1}^{2 N} \frac{a_{i} \sigma_{i}}{\left(1+\gamma \sigma_{i}\right)^{2}}-E_{l}=0$ for $\gamma_{k+1}>0$;
$8 \quad \mathbf{z}_{k+1}=\left(\mathbf{I}+\sum_{i=1}^{2 N} \frac{\gamma_{k+1} \sigma_{i}}{1+\gamma_{k+1} \sigma_{i}} \mathbf{p}_{i} \mathbf{p}_{i}^{T}\right)\left(\mathbf{c}+\frac{1}{\rho} \boldsymbol{\lambda}\right)$;
$9 \quad \boldsymbol{\lambda}_{k+1}=\boldsymbol{\lambda}_{k}+\rho\left(\mathbf{c}_{k+1}-\mathbf{z}_{k+1}\right)$;

Time-Complexity graph

Simulation example

- Let us use Algorithm 2 in example environment. Consider radar with bandwidth of 6 GHz to be sampled at sampling frequency of $f_{s}=12 \mathrm{GHz}$.
- Fast-time radar code has length $T=1 \mu$ s (i.e. $N=12000$).
- The radar operates in spectrally busy environment with seven constrained bandwidths

$$
\begin{aligned}
& \left\{\Omega_{k}\right\}_{k=1}^{7}=\{[0.0000,0.0617],[0.0700,0.1247] \\
& {[0.1526,0.2540],[0.3086,0.3827],[0.4074,0.4938]} \\
& [0.6185,0.7600],[0.8200,0.9500]\} .
\end{aligned}
$$

- Covariance matrix is modelled as:

$$
\begin{equation*}
\mathbf{M}=\sigma_{0} \mathbf{I}+\sum_{k=1}^{K} \frac{\sigma_{l, k}}{\Delta f_{k}} \mathbf{R}_{l}^{k}+\sum_{k=1}^{K_{J}} \sigma_{J, k} \mathbf{R}_{J, k} \tag{21}
\end{equation*}
$$

- For reference signal we use linearly modulated signal $\mathbf{c}_{0}=e^{j 2 \pi\left(f_{\Delta} t+f_{0}\right) t}$, with carrier frequency $f_{0}=1.8 \mathrm{GHz}$ and frequency range $f_{\triangle}=3.6 \mathrm{GHz} / \mu \mathrm{s}$.

Simulation example

- $\sigma_{0}=0 \mathrm{~dB}$ (thermal noise level)
- $K=7$ (number of licensed radiators)
- $\sigma_{l, k}=10 \mathrm{~dB}, \forall k \in\{1, \ldots, K\}$ (energy of coexisting telecom network operating on normalized frequency band $\left.\Omega_{k}=\left[f_{1}^{k}, f_{2}^{k}\right]\right)$
- $\Delta f_{k}=f_{2}^{k}-f_{1}^{k}, \forall k \in\{1, \ldots, K\}$ (bandwidth associated with the k'th licensed radiator)
- $K_{J}=2$ (number of active and unlicensed narrowband jammers)
- $\sigma_{J, k}=\left\{\begin{array}{ll}50 \mathrm{~dB}, & k=1 \\ 40 \mathrm{~dB}, & k=2,\end{array}\right.$ (energy of active jammers)
- $\mathbf{R}_{J, k}=\mathbf{r}_{J, k} \mathbf{r}_{J, k}^{H}, k=1, \ldots, K_{J}$ (normalized disturbance covariance matrix of the k 'th active unlicensed jammer)
- $\mathbf{r}_{J, k}=e^{j 2 \pi f_{j, k} n / f_{s}}, f_{J, 1} / f_{s}=0.7$ and $f_{J, 2} / f_{s}=0.75$
- $w_{k}=1, \forall k \in\{1, \ldots, 7\}$ (weights in \mathbf{R}_{l}).

Frequency spectrum and comparison to other method [3]

SINR convergence

Ambiguity function

References

[1] W. Rowe, P. Stoica, and J. Li, "Spectrally constrained waveform design," IEEE Signal Process. Mag., vol. 31, no. 3, pp. 157-162, 2014.
[2] A. Aubry, V. Carotenuto and A. De Maio, "Forcing multiple spectral compatibility constraints in radar waveforms," IEEE Signal Processing Letters, vol. 23, no. 4, pp. 483-487, 2016.
[3] A. Aubry, A. De Maio, M. Piezzo and A. Farina, "Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization," IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 2, pp. 1138-1152, 2014.
[4] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.
[5] D. R. Hunter and K. Lange, "A tutorial on MM algorithms," Amer. Statist., vol. 58, no. 1, pp. 30-37, 2004.

