Compound Multiple Access Channel with Full-Duplex Amplify-andForward Transmitter Cooperations

Jianhao Huang

National Key Lab of Science and Technology on Communications
University of Electronic Science and Technology of China
26 June 2018

Contents

O Background

- Proposed scheme
- Algorithm
- Simulation
- Conclusion

Interference in cellular networks

Cellular networks

Two-user Gaussian interference channel

When the interference channels are very strong, it is optimal to jointly decode both the two users' messages at each receiver. In this case, this interference channel is so-called compound multiple access channel.

```
Ref: H. Sato, "The capacity of the Gaussian interference channel under strong interference," IEEE Trans. Inf. Theory,, vol. 27,no. 6,
pp. 786-788, 1981.
```


Transmitter cooperations

- Communication setup
- Share the same frequency band;
- Full-duplex model.
- Pramod et al works
- Decode-and-forward (DF);
- Perfect self-interference cancellation.
- Our work

- Amplify-and-forward (AF);
- Residual self-interference accumulation

Interference channel with transmitter cooperations

Transmission and reception at transmitter

Time Slots\#

Transmitted	
signals	$\begin{array}{l}w_{j i} x_{j}(i)+w_{j 2} x_{j}(i-1) \\ +w_{j 3}\left(x_{j}(i-1)+\hat{y}_{j}(i-1)\right)\end{array}$

Received signals

Signals after
SI cancellation

$$
x_{\bar{j}}(i)+\hat{\mathbf{y}}_{j}(i)
$$

Forward (one-block delay)

■ Transmitted signals at transmitter \boldsymbol{j}

- The new signal $x_{j}(i)$;
- The old signal $x_{j}(i-1)$ again;
- The received signals $x_{\bar{j}}(i-1)+\hat{\mathbf{y}}_{j}(i-1)$ after processing.

Transmitter ${ }^{j} \bigcirc \quad x_{j}(i-1)$
Transmitter $\bar{j} \bigcirc x_{j}(i-1) \quad \bigcirc$ be

- The signal $t_{\bar{j}}(i)$ from transmitter \bar{j};
- The signal $t_{j}(i)$ from itself as self-interference;
- The additive Gaussian noise $\boldsymbol{n}_{\boldsymbol{j}}(\boldsymbol{i})$.

Self-interference (SI) cancellation and process

\square SI cancellation for the signal $\boldsymbol{t}_{\boldsymbol{j}}(\boldsymbol{i})$
SI at the \boldsymbol{i}-th time slot:

$$
t_{j}(i)=w_{j 1} x_{j}(i)+w_{j 2} x_{j}(i-1)+w_{j 3}\left(y_{j}(i-1)\right)
$$

after SI cancellation, the residual part treated as

$$
\hat{t}_{j}(i) \sim \mathcal{N}\left(0, \hat{P}_{j}\right)
$$

constant \hat{P}_{j} is the residual power of SI .

Time Slots\#

Received signals

$$
t_{j}(i)+t_{\bar{j}}(i)+n_{j}(i)
$$

Cancellation process for the signal $t_{\bar{j}}(i)$

$$
t_{\bar{j}}(i)=w_{\bar{j} 1} x_{\bar{j}}(i)+w_{\bar{j} 2} x_{\bar{j}}(i-1)+w_{\bar{j} 3}\left(w_{j i} h_{\bar{j} j}\left(x_{j}(i-1)+\hat{y}_{j}(i-1)\right)\right)
$$

- Cancel $x_{j}(i-1)$ known to transmitter \boldsymbol{j}
- Cancel $x_{\bar{j}}(i-1)$ estimate from $\left(1 / h_{i j} w_{\bar{j} 1}\right) y_{j}(i-1)$

$$
y_{j}(i-1)=w_{\bar{j} 1} h_{\bar{j}} x_{\bar{j}}(i-1)+\hat{y}_{j}(i-1)
$$

- The accumulated residual SI

Final: $\quad y_{j}(i)=w_{\bar{j} 1} h_{\bar{j} j} x_{\bar{j}}(i)+\hat{\mathbf{y}}_{j}(i)$
$\hat{y}_{j}(i)=\alpha_{\bar{j}} \hat{y}_{j}(i-1)+h_{\overline{i j}} w_{\bar{j} 3} \hat{y}_{\bar{j}}(i-1)+\hat{t}_{j}(i)+n_{j}(i)$, with $\alpha_{\bar{j}}=w_{\bar{j} 2} / w_{\bar{j} 1}$. Markov process

The Residual SI accumulation

- The statistics of the residual SI
- Matrix form:

$$
\hat{\mathbf{Y}}(i)=A \hat{\mathbf{Y}}(i-1)+\mathbf{F}(i)
$$

where $\hat{\mathbf{Y}}(i)=\hat{y}_{1}(i), \hat{y}_{2}(i)^{T}$ and $\mathrm{F}(i)=\left[\hat{t}_{1}(i), \hat{t}_{2}(i)\right]^{T}$.
Recursively it follows:

$$
\hat{\mathbf{Y}}(i)=\sum_{n=0}^{i-1} A^{n} \mathbf{F}(i-n)
$$

$$
\begin{aligned}
& \text { Matrix power series: } \\
& a_{1} x_{1}+a_{2} x_{2}{ }^{2}+\cdots a_{n} x_{n}{ }^{n}=\sum_{i=1}^{n} a_{n} x_{n}{ }^{n}
\end{aligned}
$$

- Stationary state:

Condition: when the time slot i tends to infinity, $\max |\lambda(A)|<1$
The covariance matrix of the residual SI will converge to a finite constant.

$$
\mathbf{E} \hat{\mathbf{Y}}(i) \cdot \hat{\mathbf{Y}}(k)^{H}=\boldsymbol{P}^{H}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]^{(i-k)^{+}} \cdot\left[\begin{array}{cc}
c_{1} & c_{3} \\
c_{3}^{*} & c_{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
\lambda_{1}^{*} & 0 \\
0 & \lambda_{2}^{*}
\end{array}\right]^{(k-i)^{+}} P
$$

Reception at each receiver

- Received signals at receiver k

$$
r_{k}(i)=\sum_{j=1}^{2} h_{j k} t_{j}(i)+n_{k}(i)
$$

It follows,

$$
\begin{gathered}
r_{k}(i)=\sum_{j=1}^{2} h_{j k} w_{j 1} x_{j}(i)+\left(h_{j k} w_{j 2}+h_{\bar{j} k} h_{\overline{j j}} w_{\bar{j} 3} w_{j 1}\right) x_{j}(i-1)+v_{k}(i) \\
\text { with } v_{k}(i)=\sum_{j=1}^{2} h_{j k} w_{j 3} \hat{y}_{j}(i-1)+n_{k}(i) .
\end{gathered}
$$

Equivalent channel model: Two-tap multiple access channel.

Treat $x_{j}(i-1)$ as interference to decode the i-th time slot messages is bad !!

Decoding scheme

- The optimal decoding scheme

Unite N time slots to decode: $\quad Y_{k}=\sum_{j=1}^{2} H_{j k} X_{j}+Z_{k}$, with $Y=\left[\begin{array}{lllll}r_{k}(N) & \cdots & r_{k}(i) & \cdots & r_{k}(1)\end{array}\right]^{T}$

- Tradeoff: unite two time slots

Channel input and output model:

$$
\left[\begin{array}{c}
r_{k}(i) \\
r_{k}(i-1)
\end{array}\right]=\left[\begin{array}{c}
h_{j k} w_{j 2}+h_{\bar{j} k} h_{\bar{j}} w_{\bar{j} 3} w_{j 1} \\
h_{j k} w_{j 1}
\end{array}\right] x_{j}(i-1)+\left[\begin{array}{c}
h_{\bar{j} k} w_{\bar{j} 2}+h_{j k} h_{\bar{j}} w_{j 3} w_{\bar{j} 1} \\
h_{\overline{j k}} w_{\bar{j} 1}
\end{array}\right] x_{\bar{j}}(i-1)+\left[\begin{array}{l}
z_{k 1} \\
z_{k 2}
\end{array}\right]
$$

- Joint forward decoding: $x_{j}(i-2)$ known; $x_{j}(i)$ treated as interference.
- Joint backward decoding: $x_{j}(i)$ known; $x_{j}(i-2)$ treated as interference. Forward:

$$
\begin{aligned}
& z_{k 1}=n_{k}(i)+\sum_{j=1}^{2} h_{j k} w_{j 1} x_{j}(i)+h_{\bar{j} k} h_{\overline{i j}} w_{j 3} w_{\bar{j} 1} \hat{y}_{j}(i) \\
& z_{k 2}=n_{k}(i-1)+\sum_{j=1}^{2} h_{\bar{j} k} h_{\overline{j j}} w_{j 3} w_{\bar{j} 1} \hat{y}_{j}(i-1)
\end{aligned}
$$

Achievable rate region

- Achievable rate region
- Stationary condition: $i \rightarrow \infty$ and $\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|\right\}<1$

Power region: $\quad \mathcal{P}=\left\{w_{i j}:\left|w_{j 1}\right|^{2}+\left|w_{j 2}\right|^{2}+\left|w_{j 3}\right|^{2}\left(\mathbf{g}_{j i j}\left|w_{\bar{j} 1}\right|^{2}+\hat{\alpha}_{j}\right) \leq \mathbf{P}_{j}\right\}$
Q_{k} denotes the covariance matrix of $Z_{k}: Q_{k}=E\left(Z_{k} \cdot Z_{k}^{H}\right)$

Optimization Problem

- Maximize sum rate
- Rate-profile approach: choose a $0 \leq \alpha \leq 1, \bar{\alpha}=1-\alpha$

Define $\quad R_{\text {sum }}=R_{1}+R_{2}, R_{1}=\alpha R_{\text {sum }}, R_{2}=\bar{\alpha} R_{\text {sum }}$.

- Sum rate maximum problem for a fixed α

$$
\begin{aligned}
& \max _{\left\{w_{i j}\right\}} R_{1}\left(\boldsymbol{R}_{2}\right) \quad \max _{\left.R_{s u m}, w_{i v}\right\}} R_{s u m} \\
& \text { s.t. } \quad R_{1} \leq \log \left(1+\mathbf{H}_{1 k}^{H} Q^{-1} \mathbf{H}_{1 k}\right) \quad \text { s.t. } \alpha R_{\text {sum }} \leq \log \left(1+\mathbf{H}_{1 k}^{H} Q^{-1} \mathbf{H}_{1 k}\right) \\
& R_{2} \leq \log \left(1+\mathbf{H}_{2 k}^{H} Q^{-1} \mathbf{H}_{2 k}\right) \\
& R_{1}+\boldsymbol{R}_{2} \leq \log \left(1+\mathbf{H}_{1 k}^{H} \boldsymbol{Q}^{-1} \mathbf{H}_{1 k}+\mathbf{H}_{2 k}^{H} \boldsymbol{Q}^{-1} \mathbf{H}_{2 k}\right) \\
& \max \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|\right\}<1 \text {, } \\
& \left\{w_{i j}\right\} \in \mathcal{P}, k=3,4 . \\
& \bar{\alpha} R_{\text {sum }} \leq \log \left(1+\mathbf{H}_{2 k}^{H} Q^{-1} \mathbf{H}_{2 k}\right) \\
& R_{\text {sum }} \leq \log \left(1+\mathbf{H}_{1 k}^{H} \boldsymbol{Q}^{-1} \mathbf{H}_{1 k}+\mathbf{H}_{2 k}^{H} \boldsymbol{Q}^{-1} \mathbf{H}_{2 k}\right) \\
& \max \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|\right\}<1, \\
& \left\{w_{i j}\right\} \in \mathcal{P}, k=3,4 \text {. }
\end{aligned}
$$

All the constraints are not convex !!

Algorithm

- Iterative method

- $\operatorname{Fix} Q_{k}$, and optimize the transmission parameters $\left\{w_{i j}\right\}$.
- Update Q_{k} with the obtained transmission parameters.

Iteratively solve the first step: optimize $w_{j 1}, w_{j 2}, w_{j 3}$ with the fixed $w_{\bar{j} 1}, w_{\bar{j} 2}, w_{\bar{j} 3}$
Define

$$
\begin{gathered}
\boldsymbol{W}_{j 1}=\left[\begin{array}{ll}
\boldsymbol{w}_{j 2} & \boldsymbol{w}_{j 1}
\end{array}\right]^{T} \quad \boldsymbol{W}_{j 2}=\left[\begin{array}{ll}
\boldsymbol{w}_{j 3} & 1
\end{array}\right]^{T} \\
\boldsymbol{H}_{j k}=\boldsymbol{G}_{\bar{j} k 1} \boldsymbol{W}_{j 1}=\boldsymbol{G}_{j k 2} \boldsymbol{W}_{\bar{j} 2}
\end{gathered}
$$

$$
\text { s.t. } \quad \alpha R_{\text {sum }} \leq \log \left(1+\mathrm{W}_{i j}^{H} T_{\bar{j} k j} \mathrm{~W}_{i j}\right)
$$

Hermitian matrix: $\quad T_{j k j}=G_{j k j}^{H} Q^{-1} G_{j k j}$

$$
\left.\max _{R_{\text {sum }},\left\{{ }_{y}\right\}}\right\} \quad R_{s u m}
$$

$$
\bar{\alpha} R_{s u m} \leq \log \left(1+W_{\bar{j}}^{H} T_{\bar{j} \bar{j} \bar{j}} W_{\bar{j}}\right)
$$

$$
R_{s u m} \leq \log \left(1+\mathrm{W}_{\bar{j}}^{H} T_{i \bar{j}} \mathrm{~W}_{\bar{j}}+\mathrm{W}_{j j}^{H} T_{\bar{j} j} \mathrm{~W}_{j j}\right)
$$

$$
\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|\right\}<1 .
$$

$$
\mathbf{W}_{j 1}^{H} \mathbf{W}_{j 1}+\left(\mathrm{W}_{j 1}^{H} \mathbf{W}_{j 1}-1\right) \mathrm{m}_{j} \leq \mathrm{P}_{j}, k=3,4 .
$$

Eigenvalue constraint

- Eigenvalue constraint approximation
- Difficult: matrix A is not Hermitian.

$$
A=\left[\begin{array}{cc}
\frac{w_{j 2}}{w_{j 1}} & h_{i j} w_{j 3} \\
h_{i j} w_{j 3} & \frac{w_{j 2}}{w_{j 1}}
\end{array}\right]
$$

- Approximation:

$$
W_{j 1}^{H} E_{0} W_{j 1} \leq \mathbf{0}, \mathbf{g}_{i j} W_{j 2}^{H} E_{1} W_{j 2} \leq \mathbf{1}
$$

with $E_{0}=\operatorname{diag}(\mathbf{1},-1), E_{1}=\operatorname{diag}(\mathbf{1}, 0)$
limit the norm of each element.

$$
\left|h_{i j} w_{j 3}\right| \geq\left|\lambda_{j}+\frac{w_{j 2}}{w_{j 1}}\right| \geq\left|\lambda_{j}\right|-\left|\frac{w_{j 2}}{w_{j 1}}\right| \rightarrow\left|\lambda_{j}\right| \leq\left|\frac{w_{j 2}}{w_{j 1}}\right|+\left|h_{i \bar{j}} w_{j 3}\right|
$$

By Gershgorin circle theorem.

- Example

Feasible set of \boldsymbol{w}_{11}
$\max \left|\lambda_{j}\right|: A \cup C$

Semidefinite Relaxation

E Equivalent change

$$
\begin{aligned}
& \max _{R_{\text {mam }}\left\{W_{j}\right\}} \quad R_{\text {sum }} \\
& \text { s.t. } \quad 2^{a R_{\text {mum }}} \leq\left(1+\operatorname{Tr}\left(T_{j k j} \tilde{W}_{i j}\right)\right) \\
& 2^{\bar{\alpha} R_{\mathrm{smm}}} \leq\left(1+\operatorname{Tr}\left(T_{\bar{i} \bar{j}} \tilde{\mathrm{~W}}_{\overline{i j}}\right)\right) \\
& 2^{R_{\mathrm{smm}}} \leq\left(1+\operatorname{Tr}\left(T_{\bar{j} \bar{j}} \tilde{W}_{\bar{j} j}\right)+\operatorname{Tr}\left(T_{\bar{j} k j} \tilde{W}_{j j}\right)\right) \\
& \operatorname{Tr}\left(\mathrm{E}_{0} \tilde{W}_{j 1}\right) \leq \mathbf{0}, \operatorname{Tr}\left(\mathrm{E}_{1} \tilde{W}_{j 1}\right) \leq 1, \\
& \operatorname{rank}\left(\tilde{W}_{j 1}\right)=\operatorname{rank}\left(\tilde{W}_{j 2}\right)=1 \\
& \operatorname{Tr}\left(\tilde{\mathrm{~W}}_{j 1}\right)+\left(\operatorname{Tr}\left(\tilde{\mathrm{W}}_{j 1}\right)-1\right) \mathrm{m}_{j} \leq \mathrm{P}_{j}, k=3,4 .
\end{aligned}
$$

Define new 2 by 2 matrix:

$$
\tilde{W}_{i j}=W_{i j} W_{i j}^{H}, \text { with } \tilde{W}_{i j} \in H^{2 \times 2}
$$

■ Gaussian Randomization

- Obtain $\tilde{W}_{i j}^{*}$ by solving the left problem
- Generate samples $W_{i j} \sim \mathcal{C N}\left(0, \tilde{W}_{i j}^{*}\right)$
- Check the generated samples.
- Choose the best couple samples.

Gaussian Algorithm

TABLE I Algorithm I: Gaussian randomization method for optimizing $\mathbf{w}_{j 1}$ and $\mathbf{w}_{j 2}$.

Input: the total sample number $I, \mathbf{Q}_{k}, \mathbf{w}_{\bar{j} 1}$, and $\mathbf{w}_{\bar{j} 2}$
Output: $\hat{\mathbf{w}}_{j 1 i^{*}}, \hat{\mathbf{w}}_{j 2 i^{*}}$
Compute the SDR solutions $\mathbf{W}_{j 1}^{*}, \mathbf{W}_{j 2}^{*}$ by solving the convex problem (53) with the fixed $\mathrm{Q}_{k}, \mathbf{w}_{\bar{j} 1}$, and $\mathbf{w}_{\bar{j} 2}$.
for $i=1$ to I do
Generate samples $\hat{\mathbf{w}}_{j 1 i} \sim \mathcal{N}\left(0, \mathbf{W}_{j 1}^{*}\right)$ and $\hat{\mathbf{w}}_{j 2 i} \sim \mathcal{N}\left(0, \mathbf{W}_{j 2}^{*}\right)$;
Set the second element of $\hat{\mathbf{w}}_{j 2 i}$ as 1 ;
if $\hat{\mathbf{w}}_{j 1}^{H} \hat{\mathbf{w}}_{j 1}+\left(\hat{\mathbf{w}}_{j 2}{ }^{H} \hat{\mathbf{w}}_{j 2}-1\right) m_{j}>P_{j}$ then
Compute $\hat{\mathbf{w}}_{j 1 i}, \hat{\mathbf{w}}_{j 2 i}$ in (55) and (56).
end if
if $\hat{\mathbf{w}}_{j 1 i}, \hat{\mathbf{w}}_{j 2 i}$ do not satisfy $\max \left(\left|\lambda_{1}\right|,\left|\lambda_{2}\right|\right)<1$ then
$\hat{R}_{\text {sum }}\left(\hat{\mathbf{w}}_{j 1 i}, \hat{\mathbf{w}}_{j 2 i}\right)=0$.
else
Compute $\hat{R}_{\text {sum }}\left(\hat{\mathbf{w}}_{j 1 i}, \hat{\mathbf{w}}_{j 2 i}\right)$ in (54).
end if
$i=i+1$.
end for
Search $i^{*}=\arg \max _{i=1, \ldots, I} \hat{R}_{s u m}\left(\hat{\mathbf{w}}_{j 1 i}, \hat{\mathbf{w}}_{j 2 i}\right)$.

Final Algorithm

TABLE II Algorithm II: Two-step iterative algorithm for optimizing transmission parameters.

Input: $l=0$, tolerances $\xi_{0}>0, \xi_{1}>0$ and feasible initial transmission parameters $\mathbf{w}_{11}^{0}, \mathbf{w}_{12}^{0}, \mathbf{w}_{21}^{0}, \mathbf{w}_{22}^{0}$
Output: $\mathrm{w}_{11}^{*}, \mathrm{w}_{12}^{*}, \mathrm{w}_{21}^{*}, \mathrm{w}_{22}^{*}$
1: repeat
2: \quad Compute \mathbf{Q}_{k}^{l} in (41) and (43) with $\mathbf{w}_{11}^{l}, \mathbf{w}_{12}^{l}, \mathbf{w}_{21}^{l}$, and \mathbf{w}_{22}^{l};
3: $\quad\left(\mathbf{w}_{11}^{l+1}, \mathbf{w}_{12}^{l+1}, \mathbf{w}_{21}^{l+1}, \mathbf{w}_{22}^{l+1}\right)=\left(\mathbf{w}_{11}^{l}, \mathbf{w}_{12}^{l}, \mathbf{w}_{21}^{l}, \mathbf{w}_{22}^{l}\right)$.
4: repeat
5: \quad Obtain $\left(\mathbf{w}_{11}^{l+1}, \mathbf{w}_{12}^{l+1}\right)=\left(\hat{\mathbf{w}}_{11 i^{*}}, \hat{\mathbf{w}}_{12 i^{*}}\right)$ via Algorithm I with the fixed $\mathbf{w}_{21}^{l+1}, \mathbf{w}_{22}^{l+1}$, and Q_{k}^{l};
6: \quad Obtain $\left(\mathbf{w}_{21}^{l+1}, \mathbf{w}_{22}^{l+1}\right)=\left(\hat{\mathbf{w}}_{21 i^{*}}, \hat{\mathbf{w}}_{22 i^{*}}\right)$ via Algorithm I with the fixed $\mathbf{w}_{11}^{l+1}, \mathbf{w}_{12}^{l+1}$, and \mathbf{Q}_{k}^{l}.
until $\left|\hat{R}_{\text {sum }}\left(\mathbf{w}_{11}^{l+1}, \mathbf{w}_{12}^{l+1}\right)-\hat{R}_{\text {sum }}\left(\mathbf{w}_{21}^{l+1}, \mathbf{w}_{22}^{l+1}\right)\right|<\xi_{0}$.
$l=l+1$.
until $\left|R_{\text {sum }}\left(\mathbf{w}_{11}^{l}, \mathbf{w}_{12}^{l}, \mathbf{w}_{21}^{l}, \mathbf{w}_{22}^{l}\right)-R_{\text {sum }}\left(\mathbf{w}_{11}^{l-1}, \mathbf{w}_{12}^{l-1}, \mathbf{w}_{21}^{l-1}, \mathbf{w}_{22}^{l-1}\right)\right|<\xi_{1}$
10: $\left(\mathbf{w}_{11}^{*}, \mathbf{w}_{12}^{*}, \mathbf{w}_{21}^{*}, \mathbf{w}_{22}^{*}\right)=\left(\mathbf{w}_{11}^{l}, \mathbf{w}_{12}^{l}, \mathbf{w}_{21}^{l}, \mathbf{w}_{22}^{l}\right)$.

Convergence

P_{1}	20dB
\boldsymbol{P}_{2}	20dB
$h_{12}=h_{21}$	3
$\hat{\boldsymbol{P}}_{j}$ (Residual SI)	-10dB
channel	value
$\left\|h_{13}\right\|$	0.1
$\left\|h_{24}\right\|$	0.1
$\left\|h_{14}\right\|$	0.4
$\left\|h_{23}\right\|$	0.4

The convergence of algorithm

Achievable Rate region

P_{1}	20dB	
P_{2}	20dB	
$h_{12}=h_{21}$	3	
$\hat{P}_{\boldsymbol{p}}$ (Residual SI)	-10dB	
channel	value	
$\left\|h_{13}\right\|$	0.1	
$\left\|h_{24}\right\|$	0.1	
$\mathrm{A}_{\text {I }} \quad\left\|h_{14}\right\|=$		0.4
$\mathrm{A}_{\text {u }} \quad\left\|h_{14}\right\|=$		0.5

Achievable rate regions

Conclusion

- AF-based scheme has been proposed;
- Accumulated residual self-interference has been studied;
- Joint forward decoding and backward decoding were proposed to characterize the achievable rate regions;
- SDR-based algorithm was studied.

