MULTIPLE LAYERS OF CONTRASTED IMAGES FOR ROBUST FEATURE-BASED VISUAL TRACKING

Xi WANG, Marc CHRISTIE, Eric MARCHAND Univ Rennes, Inria, CNRS, IRISA

Innín SIRISA

SLAM and Visual SLAM

SLAM = Simultaneous Localization And Mapping

is the computational problem of constructing a map of an unknown environment while simultaneously keeping track of an agent's location within it

Indoor AR scene (Image: AR Kit Apple)

SLAM and visual SLAM

Feature-based SLAM and low-level extractor matching

- Feature-based SLAMs rely on low-level extractors and descriptors
- A minimization of reprojection error of keypoints to estimate camera pose
- Insufficient extracting and wrong matching cause inaccurate estimations

Feature-based ORB-SLAM [R. Mur-Artal et al. 2015]

Problematic: Illumination variance

BCA = **B**rightness **C**onstancy **A**ssumption

Synthetic Illumination Dataset: NewTsukuba Dataset [M. Peris-Martorell 2012]

(a) Daylight condition (b) Flashlight condition (c) Matching result

Related Works

Illumination Invariant Imaging description

[M. Will et al. 2014] [R. Arandjelovic et al. 2016] [T. Nasser et al. 2018]

- Empirical or learning based illumination invariant description
- Incompatible to low-level feature extractors
- Remain high noise level

Automatic Exposure Correction

[Y. Lu et al. 2012] [S. Huang et al. 2013] [K. Gu et al. 2016]

- Learning a parameter of S-Curve or other correction function to enhance the contrast of whole image or segments of image
- Correction oriented towards aesthetic and human perception

HDR imaging

[T. Wang et al. 2011]

- Synthetic HDR from single image by changing parameters S Curve function
- Need specific designed computer vision tools for HDR image, time consuming

Automatic exposure correction IlluminationthinScattoreintergeto[M[Y.Y.Villettat].220124]

No-Free-Lunch in contrast enhancement S-Curve, a good idea?

Reference Image

S-Curve Enhancement under different parameters

Query Image

No-Free-Lunch in contrast enhancement

S-Curve, a good idea?

No-Free-Lunch in contrast enhancement

Feature points keep generating and losing across different parameters of S-Curve, which suggests a low-correlated information between each other.

Our Approach: Multiple Layered Image (MLI)

Low-correlated contrasted layers

A saturated affine transform function **SAT(u=(a,b))** with contrast band (cutting points) of **SAT (0.3,0.5)**

Multiple layered image in which each layer represents the low-correlated information from specific contrast parameter.

An optimization frame

Generation Map of Matching Number

An optimization frame

Generation Map of Similarity

Map of matching number

a in SAT(*I*,(a,b))

We find **maximum** contrast band (a^{*},b^{*}) as the configuration of **first** layer Calculate correlation map of **maximum** against all others, yields this very contrast band's <u>similarity map</u>

Similarity map w.r.t the maximum (a^{*},b^{*})

a in SAT(*I,*(a**,**b))

Similarity map represents one contrast band's **correlation** against contrast bands

An optimization frame

Generation Map of Matching Number

A matching map with low-correlation

We find **maximum** contrast band (a,b) as the configuration of **first** layer

Iteratively generating contrast band for each layer

An iterative optimization framework

Algorithm to calculate MLI

Multiple Layered Image (MLI)

Pipeline with optimization framework

Multiple layered image in which each layer represents the low-correlated information from specific contrast parameter.

15

Results: Multiple Layered Image (MLI)

Experiments and results

Experiments

- Under four different lighting conditions of NewTsukuba synthetic data set [M. Peris-Martorell et al. 2012]
- Relocalization test: Keyframe retrieval from already generated map
- Repeatability test: Across different illumination conditions

Results: Multiple Layered Image (MLI)

Experiments and results

- MLI-supported ORB-SLAM gains better results against original version of ORB-SLAM and NID-SLAM [G. Pascoe et al. 2017]
- Repeatability test with ORB [E. Rublee et al. 2011], SURF [H. Bay 2006] and SIFT [D. Lowe 2004] extractors

V_1 V_2	Daylight			Fluo			Lamps			Flash		
Ì	NID	ORB	MLI	NID	ORB	MLI	NID	ORB	MLI	NID	ORB	MLI
Daylight	99.3	100	100	96.7	96.2	98.4	73.9	97.6	53.6	74.6	79.8	77.1
Fluo	95.0	88.1	95.1	99.7	100	100	85.3	93.9	100	95.8	100	100
Lamps	88.3	55.7	93.3	93.6	79.8	93.4	93.1	100	100	84.3	37.9	96.8
Flash	23.8	30.7	77 . 6	92.2	90.6	93.6	0.00	0.00	94.2	92.0	100	99.3

ref		Daylight			Fluorescent			Lamps			Flashlight		
		ORB	SIFT	SURF	ORB	SIFT	SURF	ORB	SIFT	SURF	ORB	SIFT	SURF
Daylight	D	100/100	100/100	100/100	63.6/21.2	36.2/21.5	50.1/20.0	21.1/0.8	22.2/0.5	28.6/1.1	52.3/5.8	43.0/11.3	48.6/5.9
	Μ	100/100	100/100	100/100	85.3/38.7	64.1/37.3	75.4/34.4	35.7/1.6	39.8/1.1	49.8/2.2	67.6/8.4	50.9/13.8	56.7/8.4
Fluorescent	D	63.7/21.2	48.7/27.2	63.2/22.8	100/100	100/100	100/100	7.0/0.3	33.3/1.0	44.4/1.5	49.8/9.1	54.5/16.9	59.7/8.4
	Μ	72.3/34.7	61.2/34.7	76.6/30.7	100/100	100/100	100/100	13.8/0.4	51.0/1.6	65.7/2.0	66.2/13.9	60.8/21.5	65.4/13.4
Lamps	D	4.2/0.9	2.0/1.2	3.1/1.7	1.4/0.5	2.1/1.4	3.6/1.7	100/100	100/100	100/100	4.4/1.0	1.2/0.5	3.8/0.8
	Μ	64.6/20.0	46.9/24.0	62.1/21.8	66.6/21.8	47.0/26.7	60.7/25.9	100/100	100/100	100/100	56.8/6.7	41.3/14.2	46.2/9.0
Flashlight	D	34.0/5.3	12.2/5.4	16.4/5.3	32.4/7.6	11.3/6.3	16.2/6.2	14.6/0.5	5.1/0.0	12.1/0.2	100/100	100/100	100/100
	Μ	58.1/11.8	31.4/11.8	44.6/11.4	61.4/16.6	30.5/15.0	44.0/13.5	18.4 /0.5	16.4/0.5	35.0/0.8	100/100	100/100	100/100

Table 1. Repeatability/matching ratio evaluation between MLI (M) and default single image (D) in percentage.

Conclusion and limitations

Contributions:

- Multiple layers of contrasted image (MLI) for more robust keypoint feature tracking
- A general solution for all extractors
- Quasi-real time SLAM implementation

Demonstration in video:

Video

M/Frame

1.200

P P P P H 4

M/Frame

> H Q Q Z

۲

••

B

Ŧ

•

•

ш.**В**

-

٠

.....

ORB-SLAM Retracking the

.

TRYING TO RELOCALIZE R:62 G:62 B:62 <Fs: 67 , MPs: 7853 , Tracked: 314</pre>

🖥 🖬

100

•

•

•

in t

۰

٠

:108 G:108 B:108

٠

٠

MULTIPLE LAYERS OF CONTRASTED IMAGES FOR ROBUST FEATURE-BASED VISUAL TRACKING

Xi WANG, Marc CHRISTIE, Eric MARCHAND Univ Rennes, Inria, CNRS, IRISA

Innín SIRISA