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‘ 1. Goal Of This Work |
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e Grayscale image has only intensity information at each pixel location (C' = 1)
e Color image has red, green, and blue samples at each pixel (C' = 3)
e Hyperspectral image records spectra at each pixel (C' > 3)

e We previously found a way to accelerate high-dimensional bilateral filtering using stochas-
tic filtering

We propose a faster stochastic filter that reduces the number of convolutions by C' + 1 times.

‘ 2. Conventional Bilateral Filter (BF) |
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range filter kernel : w,(g(x), g(y)) = exp (
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‘ 3. Problems with Existing "Fast” Bilateral Filters |

e Several Fast Bilateral Filters have already been developed
e Replaced slow weight computation by K fast convolutions (Chaudhury, 2011)

e Replaced slow weight computation by three dimensional convolutions and ¢ number of
quantization steps (Paris, 2006)

e They are independent of window size W, but expensive for C.
e Stochastic filter replaces the range kernel for faster computation:

(g(x) — g<y>>2> |

202

E [exp ( + X1 (g(x) - g(y)))} = exp <—

with X € R¢, X ~ N(0,I/02) denote a normal random vector, and g € R® is a constant
vector
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4. Proposed: Stochastic Compressive Bilateral Filter (SCBF) |

et ¢ ~ N(0,02I), ¢ € R be a normal random vector, where I € R“*C is an identity
matrix.
Idea: Rewrite range filter kernel as: w,(g(x) —g(y)) = E [Cos (CT(g(w) — g(y)))}.
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e The convolution operator in the denominator and numerator are identical.

e Convolutions are one-dimensional.
Stochastic Compressive Bilateral Filter

input: f : Z? — R T
output: f : 7% — R¢ |
parameters: o, o

initialize numerator n(x) « 0 and denominator
d(x) < 0

for L times do

generate ¢ ~ N(0, 0. 2I) 1
T
compute z(x) < ¢ f(x) e
o -—-QFSBF # =20, =5
compute c¢(x) <= cos(z(x)) and s(x) = sin(z(x)) | TTIgEeRE 0 S0
compute v(az) <~ ws(a:) *c(:c) . | —FSBF 9=50,0=5
- |—QFSBF 8 =50,0 =5
compute ﬁ(w) <~ ws(w) *S(ZB) | | ——8BF8=50,0=5
update n(x) < n(z) + ¢ (B(x)c(x) — y(x)s(z)) o
update d(x) < d(x) + c(x)y(x) + s(x)b(x) 10° 10 10° 107
end Ior Convolutions
set f(x) < f(x) + oon(x)/d(x)
per pixel per image
multiply add divide exp/sin/cos memory \convolution clusters
Original W4D+C+2)W*D+(D-1)+(C+1)(W?-1) C wW* 1+D+C 0 0
Paris (D +2)Q” (D +1)Q” C Q" cQ” 2 0
Chaudhury D D D_1 D D
Sugimoto (D+2C+ 1)K DK" + 2K C K 1+D+C|(C+1)K 0
Deng (3C +1)K°¢ CK®+2K“t+C C 2K¢ 1+ 2C K¢ 0
Karam (D+4C +2)L (D+C)L+ (C+1)(L—-1) C 2L 1+D+C (2C+2)L 0
Sugimoto (C+1K KD+2(K —1) C+1 K 1+D+C| (C+1)K K
Nair CK KD C K [1+D+C (C+1)K| K
SCBF (proposed) | (5C' +2)L )L+ (C+1)(L-1)+C C 2L 14 2C 2L 0

e [ = number of iterations in SCBF
¢ Quasi-random sequence reduces L
e We generalize this for non-local means (paper under review)
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