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1. Goal Of This Work

Grayscale Color Hyperspectral
768x512x1 768x512x3 1392x1040x31

•Grayscale image has only intensity information at each pixel location (C = 1)
•Color image has red, green, and blue samples at each pixel (C = 3)
•Hyperspectral image records spectra at each pixel (C � 3)
•We previously found a way to accelerate high-dimensional bilateral filtering using stochas-

tic filtering
We propose a faster stochastic filter that reduces the number of convolutions by C + 1 times.

2. Conventional Bilateral Filter (BF)

spatial filter kernel : ws(x,y) = exp

(
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)

range filter kernel : wr(g(x), g(y)) = exp

(
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2

2σ2r

)

f̂ (x) :=

∑
y∈Z2ws(x− y)wr(g(x)− g(y))f (y)∑
y∈Z2ws(x− y)wr(g(x)− g(y))

.

3. Problems with Existing ”Fast” Bilateral Filters

• Several Fast Bilateral Filters have already been developed
•Replaced slow weight computation by K fast convolutions (Chaudhury, 2011)
•Replaced slow weight computation by three dimensional convolutions and Q number of

quantization steps (Paris, 2006)
• They are independent of window size W , but expensive for C.
• Stochastic filter replaces the range kernel for faster computation:
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,

with X ∈ RC, X ∼ N (0, I/σ2r) denote a normal random vector, and g ∈ RC is a constant
vector

4. Proposed: Stochastic Compressive Bilateral Filter (SCBF)

Let ζ ∼ N (0, σ−2r I), ζ ∈ RC be a normal random vector, where I ∈ RC×C is an identity
matrix.
Idea: Rewrite range filter kernel as: wr(g(x)− g(y)) = E

[
cos
(
ζT (g(x)− g(y))

)]
.

wr(f (x)− f (y)) = E
[
cos(ζT (f (x)− f (y)))

]
= E

[[
cos(ζTf (x)) sin(ζTf (x))

] [cos(ζTf (y))
sin(ζTf (y))

]]
.

∇wr(f (x)− f (y)) = E[−ζ sin(ζT (f (x)− f (y)))] = E
[
ζ
[
− sin(ζTf (x)) cos(ζTf (x))

] [cos(ζTf (y))
sin(ζTf (y))

]]

f̂ (x)=f (x)+σ2r
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• The convolution operator in the denominator and numerator are identical.
•Convolutions are one-dimensional.
Stochastic Compressive Bilateral Filter

input: f : Z2→ RC
output: f̂ : Z2→ RC
parameters: σr, σs
initialize numerator n(x) ⇐ 0 and denominator
d(x)⇐ 0
for L times do

generate ζ ∼ N (0, σ−2r I)
compute z(x)⇐ ζTf (x)
compute c(x)⇐ cos(z(x)) and s(x) = sin(z(x))
compute γ(x)⇐ ws(x) ? c(x)
compute β(x)⇐ ws(x) ? s(x)
update n(x)⇐ n(x) + ζ (β(x)c(x)− γ(x)s(x))
update d(x)⇐ d(x) + c(x)γ(x) + s(x)β(x)

end for
set f̂ (x)⇐ f (x) + σ2rn(x)/d(x)

per pixel per image
multiply add divide exp/sin/cos memory convolution clusters

Original W 2(D + C + 2) W 2D + (D − 1) + (C + 1)(W 2 − 1) C W 2 1 +D + C 0 0
Paris (D + 2)QD (D + 1)QD C QD CQD 2 0

Chaudhury
(D + 2C + 1)KD DKD + 2KD−1 C KD 1 +D + C (C + 1)KD 0Sugimoto

Deng (3C + 1)KC CKC + 2KC−1 + C C 2KC 1 + 2C KC 0
Karam (D + 4C + 2)L (D + C)L + (C + 1)(L− 1) C 2L 1 +D + C (2C + 2)L 0

Sugimoto (C + 1)K KD + 2(K − 1) C + 1 K 1 +D + C (C + 1)K K
Nair CK KD C K 1 +D + C (C + 1)K K

SCBF (proposed) (5C + 2)L (2C)L + (C + 1)(L− 1) + C C 2L 1 + 2C 2L 0

• L = number of iterations in SCBF
•Quasi-random sequence reduces L
•We generalize this for non-local means (paper under review)

5. Results

Color Image (M=3) 94.26 sec 7.11 sec 2.27 sec

Hyperspectral Image (M=31) 1186.66 sec 282.93 sec 187.65 sec
Noisy Edge Image e(i) BF Result SBF Result [1] Proposed: SCBF Result
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