

Near-Constant Time Bilateral Filter For High Dimensional Images

Christina Karam¹, Kenjiro Sugimoto², Keigo Hirakawa¹

University of Dayton, Electrical and Computer Engineering, {ckaram1,khirakawa1}@udayton.edu ² Waseda University, Graduate School of Information, Production and Systems, ksugimoto@aoni.waseda.jp

1. Goal Of This Work

4. Proposed: Stochastic Compressive Bilateral Filter (SCBF)

Let $\boldsymbol{\zeta} \sim \mathcal{N}(0, \sigma_r^{-2}\boldsymbol{I}), \, \boldsymbol{\zeta} \in \mathbb{R}^C$ be a normal random vector, where $\boldsymbol{I} \in \mathbb{R}^{C \times C}$ is an identity matrix. Idea: Rewrite range filter kernel as: $w_r(\boldsymbol{g}(\boldsymbol{x}) - \boldsymbol{g}(\boldsymbol{y})) = \mathbb{E}\left[\cos\left(\boldsymbol{\zeta}^T(\boldsymbol{g}(\boldsymbol{x}) - \boldsymbol{g}(\boldsymbol{y}))\right)\right].$ $w_r(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{y})) = \mathbb{E}\left[\cos(\boldsymbol{\zeta}^T(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{y})))\right] = \mathbb{E}\left[\left[\cos(\boldsymbol{\zeta}^T\boldsymbol{f}(\boldsymbol{x})) \sin(\boldsymbol{\zeta}^T\boldsymbol{f}(\boldsymbol{x}))\right] \begin{bmatrix}\cos(\boldsymbol{\zeta}^T\boldsymbol{f}(\boldsymbol{y}))\\\sin(\boldsymbol{\zeta}^T\boldsymbol{f}(\boldsymbol{y}))\end{bmatrix}\right].$

- Grayscale image has only intensity information at each pixel location (C = 1)
- Color image has red, green, and blue samples at each pixel (C = 3)
- Hyperspectral image records spectra at each pixel ($C \gg 3$)
- We previously found a way to accelerate high-dimensional bilateral filtering using stochastic filtering

We propose a faster stochastic filter that reduces the number of convolutions by C + 1 times.

2. Conventional Bilateral Filter (BF)

spatial filter kernel :
$$w_s(\boldsymbol{x}, \boldsymbol{y}) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{y}\|^2}{2\sigma_s^2}\right)$$

range filter kernel : $w_r(\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{y})) = \exp\left(-\frac{\|\boldsymbol{g}(\boldsymbol{x}) - \boldsymbol{g}(\boldsymbol{y})\|^2}{2\sigma_r^2}\right)$

$$\widehat{\boldsymbol{f}}(\boldsymbol{x}) := \frac{\sum_{\boldsymbol{y} \in \mathbb{Z}^2} w_s(\boldsymbol{x} - \boldsymbol{y}) w_r(\boldsymbol{g}(\boldsymbol{x}) - \boldsymbol{g}(\boldsymbol{y})) \boldsymbol{f}(\boldsymbol{y})}{\sum_{\boldsymbol{y} \in \mathbb{Z}^2} w_s(\boldsymbol{x} - \boldsymbol{y}) w_r(\boldsymbol{g}(\boldsymbol{x}) - \boldsymbol{g}(\boldsymbol{y}))}$$

3. Problems with Existing "Fast" Bilateral Filters

 $\nabla w_r(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{y})) = \mathbb{E}[-\boldsymbol{\zeta}\sin(\boldsymbol{\zeta}^T(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{y})))] = \mathbb{E}\left[\boldsymbol{\zeta}\left[-\sin(\boldsymbol{\zeta}^T\boldsymbol{f}(\boldsymbol{x})) \cos(\boldsymbol{\zeta}^T\boldsymbol{f}(\boldsymbol{x}))\right] \begin{bmatrix}\cos(\boldsymbol{\zeta}^T\boldsymbol{f}(\boldsymbol{y}))\\\sin(\boldsymbol{\zeta}^T\boldsymbol{f}(\boldsymbol{y}))\end{bmatrix}\right]$

$$\widehat{\boldsymbol{f}}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}) + \sigma_r^2 \frac{\mathbb{E}\left[\boldsymbol{\zeta} \begin{bmatrix} -\sin(\boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})) \\ \cos(\boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})) \end{bmatrix}^T \!\! \left(w_s(\boldsymbol{x}) \star \begin{bmatrix} \cos(\boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})) \\ \sin(\boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})) \end{bmatrix} \right) \right]}{\mathbb{E}\left[\begin{bmatrix} \cos(\boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})) \\ \sin(\boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})) \end{bmatrix}^T \!\! \left(w_s(\boldsymbol{x}) \star \begin{bmatrix} \cos(\boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})) \\ \sin(\boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})) \end{bmatrix} \right) \end{bmatrix} \right]}.$$

The convolution operator in the denominator and numerator are identical.
Convolutions are one-dimensional.
Stochastic Compressive Bilateral Filter

input: $\boldsymbol{f} : \mathbb{Z}^2 \to \mathbb{R}^C$ output: $\boldsymbol{\hat{f}} : \mathbb{Z}^2 \to \mathbb{R}^C$ parameters: σ_r, σ_s initialize numerator $\boldsymbol{n}(\boldsymbol{x}) \leftarrow 0$ and denominator $d(\boldsymbol{x}) \leftarrow 0$ for L times do generate $\boldsymbol{\zeta} \sim \mathcal{N}(\boldsymbol{0}, \sigma_r^{-2}\boldsymbol{I})$ compute $z(\boldsymbol{x}) \leftarrow \boldsymbol{\zeta}^T \boldsymbol{f}(\boldsymbol{x})$ compute $c(\boldsymbol{x}) \leftarrow \cos(z(\boldsymbol{x}))$ and $s(\boldsymbol{x}) = \sin(z(\boldsymbol{x}))$ compute $\gamma(\boldsymbol{x}) \leftarrow w_s(\boldsymbol{x}) \star c(\boldsymbol{x})$ compute $\beta(\boldsymbol{x}) \leftarrow w_s(\boldsymbol{x}) \star s(\boldsymbol{x})$ update $\boldsymbol{n}(\boldsymbol{x}) \leftarrow \boldsymbol{n}(\boldsymbol{x}) + \boldsymbol{\zeta} (\beta(\boldsymbol{x})c(\boldsymbol{x}) - \gamma(\boldsymbol{x})s(\boldsymbol{x}))$ update $d(\boldsymbol{x}) \leftarrow d(\boldsymbol{x}) + c(\boldsymbol{x})\gamma(\boldsymbol{x}) + s(\boldsymbol{x})\beta(\boldsymbol{x})$ end for set $\widehat{\boldsymbol{f}}(\boldsymbol{x}) \leftarrow \boldsymbol{f}(\boldsymbol{x}) + \sigma_r^2 \boldsymbol{n}(\boldsymbol{x})/d(\boldsymbol{x})$

- Several Fast Bilateral Filters have already been developed
- Replaced slow weight computation by *K* fast convolutions (Chaudhury, 2011)
- Replaced slow weight computation by three dimensional convolutions and Q number of quantization steps (Paris, 2006)
- They are independent of window size W, but expensive for C.
- Stochastic filter replaces the range kernel for faster computation:

 $\mathbb{E}\left[\exp\left(\pm j\boldsymbol{X}^{T}(\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y}))\right)\right] = \exp\left(-\frac{(\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y}))^{2}}{2\sigma_{r}^{2}}\right),$

with $X \in \mathbb{R}^C$, $X \sim \mathcal{N}(\mathbf{0}, I/\sigma_r^2)$ denote a normal random vector, and $g \in \mathbb{R}^C$ is a constant vector

	per pixel					per image	
	multiply	add	divide	exp/sin/cos	memory	convolution	clusters
Original	$W^2(D+C+2)$	$W^2D + (D-1) + (C+1)(W^2-1)$	C	W^2	1 + D + C	0	0
Paris	$(D+2)Q^D$	$(D+1)Q^D$	C	Q^D	CQ^{D}	2	0
Chaudhury	$(D+2C+1)K^D$	$DK^D + 2K^{D-1}$	C	K^D	1 + D + C	$(C+1)K^D$	0
Sugimolo		$\alpha rr(1) \alpha$				T T C	
Deng	$(3C+1)K^{c}$	$CK^{\mathbb{C}} + 2K^{\mathbb{C}-1} + C$		$2K^{\mathbb{C}}$	1+2C		0
Karam	(D+4C+2)L	(D+C)L + (C+1)(L-1)	C	2L	1 + D + C	(2C+2)L	0
Sugimoto	(C+1)K	KD + 2(K - 1)	C+1	K	1 + D + C	(C+1)K	K
Nair	CK	KD	C	K	1+D+C	(C+1)K	K
SCBF (proposed)	(5C+2)L	(2C)L + (C+1)(L-1) + C	C	2L	1+2C	2L	0

• L = number of iterations in SCBF

• Quasi-random sequence reduces *L*

• We generalize this for non-local means (paper under review)

Noisy Edge Image e(i)

BF Result

SBF Result [1]

Proposed: SCBF Result

[1] C.Karam and K.Hirakawa, "Monte-Carlo acceleration of bilateral filter and non-local means," IEEE Trans. Image Process., vol.27, no. 3, pp. 1462-1474, Mar. 2018