Near-Constant Time Bilateral Filter For High Dimensional Images

Christina Karam ${ }^{1}$, Kenjiro Sugimoto ${ }^{2}$, Keigo Hirakawa ${ }^{1}$
${ }^{1}$ University of Dayton, Electrical and Computer Engineering, \{ckaram1,khirakawa1\}@udayton.edu
${ }^{2}$ Waseda University, Graduate School of Information, Production and Systems, ksugimoto@aoni.waseda.jp

DAYTON

- Grayscale image has only intensity information at each pixel location $(C=1)$
- Color image has red, green, and blue samples at each pixel $(C=3)$
- Hyperspectral image records spectra at each pixel $(C \gg 3)$
- We previously found a way to accelerate high-dimensional bilateral filtering using stochastic filtering
We propose a faster stochastic filter that reduces the number of convolutions by $C+1$ times.

2. Conventional Bilateral Filter (BF)
spatial filter kernel : $w_{s}(\boldsymbol{x}, \boldsymbol{y})=\exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}}{2 \sigma_{s}^{2}}\right)$
range filter kernel : $w_{r}(\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{y}))=\exp \left(-\frac{\|\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y})\|^{2}}{2 \sigma_{r}^{2}}\right)$

$$
\widehat{\boldsymbol{f}}(\boldsymbol{x}):=\frac{\sum_{\boldsymbol{y} \in \mathbb{Z}^{2}} w_{s}(\boldsymbol{x}-\boldsymbol{y}) w_{r}(\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y})) \boldsymbol{f}(\boldsymbol{y})}{\sum_{\boldsymbol{y} \in \mathbb{Z}^{2}} w_{s}(\boldsymbol{x}-\boldsymbol{y}) w_{r}(\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y}))}
$$

3. Problems with Existing "Fast" Bilateral Filters

- Several Fast Bilateral Filters have already been developed
- Replaced slow weight computation by K fast convolutions (Chaudhury, 2011)
- Replaced slow weight computation by three dimensional convolutions and Q number of quantization steps (Paris, 2006)
- They are independent of window size W, but expensive for C.
- Stochastic filter replaces the range kernel for faster computation:

$$
\mathbb{E}\left[\exp \left(\pm j \boldsymbol{X}^{T}(\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y}))\right)\right]=\exp \left(-\frac{(\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y}))^{2}}{2 \sigma_{r}^{2}}\right)
$$

with $\boldsymbol{X} \in \mathbb{R}^{C}, \boldsymbol{X} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{I} / \sigma_{r}^{2}\right)$ denote a normal random vector, and $\boldsymbol{g} \in \mathbb{R}^{C}$ is a constant vector
4. Proposed: Stochastic Compressive Bilateral Filter (SCBF)

Let $\zeta \sim \mathcal{N}\left(0, \sigma_{r}^{-2} \boldsymbol{I}\right), \zeta \in \mathbb{R}^{C}$ be a normal random vector, where $\boldsymbol{I} \in \mathbb{R}^{C \times C}$ is an identity matrix.
Idea: Rewrite range filter kernel as: $w_{r}(\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y}))=\mathbb{E}\left[\cos \left(\boldsymbol{\zeta}^{T}(\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{y}))\right)\right]$.
$w_{r}(\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y}))=\mathbb{E}\left[\cos \left(\boldsymbol{\zeta}^{T}(\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y}))\right)\right]=\mathbb{E}\left[\left[\cos \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right) \sin \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right)\right]\left[\begin{array}{c}\cos \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{y})\right) \\ \sin \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{y})\right)\end{array}\right]\right]$
$\nabla w_{r}(f(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y}))=\mathbb{E}\left[-\zeta \sin \left(\zeta^{T}(\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y}))\right)\right]=\mathbb{E}\left[\zeta\left[-\sin \left(\zeta^{T} f(\boldsymbol{x})\right) \cos \left(\zeta^{T} f(\boldsymbol{x})\right)\right]\left[\begin{array}{c}{\left[\cos \left(\zeta^{T} f(\boldsymbol{s})\right)\right.} \\ \sin \\ \left.\zeta^{T} f(\boldsymbol{y})\right)\end{array}\right]\right]$

$$
\widehat{\boldsymbol{f}}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\sigma_{r}^{2} \frac{\mathbb{E}\left[\boldsymbol{\zeta}\left[\begin{array}{c}
-\sin \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right) \\
\cos \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right)
\end{array}\right]^{T}\left(w_{s}(\boldsymbol{x}) \star\left[\begin{array}{c}
\cos \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right) \\
\sin \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right)
\end{array}\right]\right)\right]}{\mathbb{E}\left[\left[\begin{array}{c}
\cos \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right) \\
\sin \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right)
\end{array}\right]^{T}\left(w_{s}(\boldsymbol{x}) \star\left[\begin{array}{c}
\cos \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right) \\
\sin \left(\boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x})\right)
\end{array}\right]\right)\right]} .
$$

- The convolution operator in the denominator and numerator are identical.
- Convolutions are one-dimensional.

Stochastic Compressive Bilateral Filter

$$
\begin{aligned}
& \text { input: } \boldsymbol{f}: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{C} \\
& \text { output: } \\
& \text { parameters: } \sigma_{r}, \sigma_{s} \\
& \text { initialize numerator } \boldsymbol{n}(\boldsymbol{x}) \Leftarrow 0 \text { and denominator } \\
& d(\boldsymbol{x}) \Leftarrow 0 \\
& \text { for } L \text { times do } \\
& \text { generate } \boldsymbol{\zeta} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{r}^{-2} \boldsymbol{I}\right) \\
& \text { compute } z(\boldsymbol{x}) \Leftarrow \boldsymbol{\zeta}^{T} \boldsymbol{f}(\boldsymbol{x}) \\
& \text { compute } c(\boldsymbol{x}) \Leftarrow \cos (z(\boldsymbol{x})) \text { and } s(\boldsymbol{x})=\sin (z(\boldsymbol{x})) \\
& \text { compute } \gamma(\boldsymbol{x}) \Leftarrow w_{s}(\boldsymbol{x}) \star c(\boldsymbol{x}) \\
& \text { compute } \beta(\boldsymbol{x}) \Leftarrow w_{s}(\boldsymbol{x}) \star s(\boldsymbol{x}) \\
& \text { update } \boldsymbol{n}(\boldsymbol{x}) \Leftarrow \boldsymbol{n}(\boldsymbol{x})+\boldsymbol{\zeta}(\beta(\boldsymbol{x}) c(\boldsymbol{x})-\gamma(\boldsymbol{x}) s(\boldsymbol{x})) \\
& \text { update } d(\boldsymbol{x}) \Leftarrow d(\boldsymbol{x})+c(\boldsymbol{x}) \gamma(\boldsymbol{x})+s(\boldsymbol{x}) \beta(\boldsymbol{x}) \\
& \text { end for } \\
& \text { set } \widehat{\boldsymbol{f}}(\boldsymbol{x}) \Leftarrow \boldsymbol{f}(\boldsymbol{x})+\sigma_{r}^{2} \boldsymbol{n}(\boldsymbol{x}) / d(\boldsymbol{x})
\end{aligned}
$$

	multiply	$\begin{aligned} & \text { per pixel } \\ & \text { add } \end{aligned}$	divide exp/sin/cos memory			per imageconvolution clusters	
Original	$W^{2}(D+C+2)$	$W^{2} D+(D-1)+(C+1)\left(W^{2}-1\right)$	C	W^{2}	$1+D+C$	0	0
Paris	$(D+2) Q^{D}$	$(D+1) Q^{D}$	C	Q^{D}	$C Q^{D}$	2	0
Chaudhury Sugimoto	$(D+2 C+1) K^{D}$	$D K^{D}+2 K^{D-1}$	C	K^{D}	$1+D+C$	$(C+1) K^{D}$	0
Deng	$(3 C+1) K^{C}$	$C K^{C}+2 K^{C-1}+C$	C	$2 K^{\text {C }}$	$1+2 C$	K^{C}	0
Karam	$(D+4 C+2) L$	$(D+C) L+(C+1)(L-1)$	C	$2 L$	$1+D+C$	$(2 C+2) L$	0
Sugimoto	$(C+1) K$	$K D+2(K-1)$	C+1	K	$1+D+C$	$(C+1) K$	K
Nair	CK	KD	C	K	$1+D+C$	$(C+1) K$	K
SCBF (proposed)	$(5 C+2) L$	$(2 C) L+(C+1)(L-1)+C$	C	$2 L$	$1+2 \mathrm{C}$	$2 L$	0

- L = number of iterations in SCBF
- Quasi-random sequence reduces L
- We generalize this for non-local means (paper under review)

[1] C.Karam and K.Hirakawa, "Monte-Carlo acceleration of bilateral filter and non-local means," IEEE Trans. Image Process., vol.27, no. 3, pp. 1462-1474, Mar. 2018

