

University of Genoa DITEN

INTRODUCTION

Traditional saliency approaches consider only image features such as color or shape for identifying important parts of the scene (bottom-up approach) [1]. Most of works [2,3] are based on such approach and do not consider task dependent cues for estimating relevant zones in scenes (top-down approach) [4]. This work analyzes cognitive behaviors of moving entities to estimate areas of interest in video scenes in a top-down fashion.

Observed spatial trajectory information

PROPOSED METHOD

TASK-DEPENDENT SALIENCY ESTIMATION FROM TRAJECTORIES OF AGENTS IN VIDEO SEQUENCES Damian Campo, Mohamad Baydoun, Lucio Marcenaro, Carlo Regazzoni.

CASES OF STUDY

Pedestrian dataset

11 areas identified as entries, exits and obstacles in the environment

RESULTS

Identified task depending salient points

References

[1] L. Itti and C. Koch, "Computational modelling of visual attention," Nature Reviews Neuroscience, vol. 2, no. 3, pp. 194–203, 2001. [2] Li, F. Meng, and J. Mao, "Saliency detection on videos with scene change," Audio, Language and Image Processing (ICALIP) 2015, pp. 506–510. [3] O. Le Meur, P. Le Callet, and D. Barba, "Predicting visual fixations on video based on low-level visual features," Vision Research, vol. 47, no. 19, pp.2483–2498, 2007.

[4] D.H. Ballard and M.M. Hayhoe, "Modelling the role of task in the control of gaze," Visual Cognition, vol. 17, no. 6-7, pp. 1185–1204, 2009.

Universidad Carlos III de Madrid

4 areas identified as attractive points for a control perimeter task

