Wireless Network Recommendation System in Heterogeneous Networks

Yue Meng (孟越) Joint work with Chuanxiao Jiang, Lei Xu, Yong Ren, and Zhu Han

> Department of Electronic Engineering, Tsinghua University, Beijing, P. R. China

> > 2015/12/14

Complex Engineered Systems Lab

Extreme densification in 5G

- Benefit:
 - Reuse of spectrum
 - Higher network capacity
 - Better coverage

Extreme densification in 5G

- Benefit:
 - Reuse of spectrum
 - Higher network capacity
 - Better coverage
- Challenges:
 - Association between users and different RATs
 - More severe interference
 - Mobility in such heterogeneous network
 - Costs of installation, maintenance and backhaul

Extreme densification in 5G

- Benefit:
 - Reuse of spectrum
 - Higher network capacity
 - Better coverage
- Challenges:
 - Association between users and different RATs
 - More severe interference
 - Mobility in such heterogeneous network
 - Costs of installation, maintenance and backhaul

RECTRONIES ON HEAD

Challenges

- User association with small cells with different RATs
 - E.g. mmWave, 4G LTE releases, 3G, WiFi, D2D
 - Frequent handoff
 - Harder to monitor small cell base stations

RECTRONISTIC - 1952 - ENGLISH

Challenges

- User association with small cells with different RATs
 - E.g. mmWave, 4G LTE releases, 3G, WiFi, D2D
 - Frequent handoff
 - Harder to monitor small cell base stations

New user association schemes are needed for better quality of service (QoS).

Existing approaches

- Biasing
- Utility function
 - Traffic load, transmission power, spectrum resource, etc...
 - Optimization, game theory, etc...

Existing approaches

- Biasing
- Utility function
 - Traffic load, transmission power, spectrum resource, etc...
 - Optimization, game theory, etc...

Passive approaches

Choosing movies: a lesson we can learn Past

Background

- Themes of movies
- Judgement from others

Complex Engineered Systems Lab

Background

Choosing movies: a lesson we can learn

- Past
 - Themes of movies
 - Judgement from others
- Now

Recommendation systems!

- Proactive approaches
 - Historical QoS information
 - Preferences
 - Social interactions

- Proactive approaches
 - Historical QoS information
 - Preferences
 - Social interactions

Network Recommendation System!

□ Measurement

• Signal strength, delay, packet loss rate...

Measurement

• Signal strength, delay, packet loss rate...

Rating

- Mean opinion score (MOS)
- E.g. E-model (VoIP, ITU-T G.107)

E-model

Transmission rating factor

$$R = Ro - Is - Id - Ie_{eff} + A$$

E-model

Transmission rating factor

E-model

Transmission rating factor
 $R = Ro - Is - Id - Ie_{eff} + A$ Mean Opinion Score

$$MOS = \begin{cases} 1 & T < 0, \\ 1 + 0.035R + R(R - 60)(100 - R) \cdot 7 \cdot 10^{-6} & 0 < T < 100, \\ 4.5 & T > 100, \end{cases}$$

□ Measurement

Signal strength, delay, packet loss rate...

Rating

- Mean opinion score (MOS)
- E.g. E-model (VoIP, ITU-T G.107)

Recommendation

Collaborative filtering

Collaborative Filtering

Recommendation value

$$f_{ij}^{CF}\left(\mathbf{R}\right) = \frac{\sum_{k \in Neighbor(i)} r_{kj} F_{sim}\left(i,k\right)}{\sum_{k \in Neighbor(i)} F_{sim}\left(i,k\right)}$$

$$\Box$$ Similarity $F_{sim}(i,k)$

- Rating vector
- Location

□ Measurement

- Signal strength, delay, packet loss rate...
- Rating
 - Mean opinion score (MOS)
 - E.g. E-model (VoIP, ITU-T G.107)
- Recommendation
 - Collaborative filtering
- □ Selection
 - Selection probability proportional to recommendation value

To Rate or Not?

Rating improves recommendation quality

- More historical information
- Rating takes costs
 - Computational resource
 - Privacy
- □ Tradeoff
 - Satisfaction game

■ Player:
$$\mathcal{U} = \{u_1, \cdots, u_N\}$$

■ Action: $\{\mathcal{A}_i\}_{i \in \{1, \cdots, N\}}$

$$\mathbf{a}_i = \left(a_{i,1}, a_{i,2}\right) \in \mathcal{A}_i$$

- $a_{i,1}$: Choice of base station
 - $a_{i,2}$: Decision on whether to rate
- $\Box \text{ Correspondence: } f_i(\mathbf{a}_i) = \left\{ \mathbf{a}_i \in \mathcal{A}_i : h_i(\mathbf{a}_i, \mathbf{a}_{-i}) \ge \Gamma_i \right\}$
 - Utility: $h_i(\mathbf{a}_i, \mathbf{a}_{-i}) = C(w\sigma_i + (1-w)\sigma_{-i})\log(1 + SNR_i / K_i)$

Player:
$$\mathcal{U} = \{u_1, \dots, u_N\}$$

Action: $\{\mathcal{A}_i\}_{i \in \{1, \dots, N\}}$
a_i = $(a_{i,1}, a_{i,2}) \in \mathcal{A}_i$
a_{i,1}: Choice of base station
a_{i,2}: Decision on whether to rate
Correspondence: $f_i(\mathbf{a}_i) = \{\mathbf{a}_i \in \mathcal{A}_i : h_i(\mathbf{a}_i, \mathbf{a}_{-i}) \ge \Gamma_i\}$
utility: $h_i(\mathbf{a}_i, \mathbf{a}_{-i}) = C(w\sigma_i + (1 - w)\sigma_{-i})\log(1 + SNR_i / K_i)$

Number of users connecting to the same base station

Player:
$$\mathcal{U} = \{u_1, \dots, u_N\}$$

Action: $\{\mathcal{A}_i\}_{i \in \{1, \dots, N\}}$
a_i = $(a_{i,1}, a_{i,2}) \in \mathcal{A}_i$
a_i: Choice of base station

• $a_{i,2}$: Decision on whether to rate

 $\Box \text{ Correspondence: } f_i(\mathbf{a}_i) = \left\{ \mathbf{a}_i \in \mathcal{A}_i : h_i(\mathbf{a}_i, \mathbf{a}_{-i}) \ge \Gamma_i \right\}$

Utility:
$$h_i(\mathbf{a}_i, \mathbf{a}_{-i}) = C(w\sigma_i + (1 - w)\sigma_{-i})\log(1 + SNR_i / K_i)$$

Rating completeness

• Utility expectation: Γ_i

Number of users connecting to the same base station

■ Satisfaction equilibrium (SE)

• An action profile \mathbf{a}^+ is a satisfaction equilibrium for the satisfaction game, if $\forall u_i \in \mathcal{U}$, we have $\mathbf{a}_i^+ \in f_i(\mathbf{a}_{-i}^+)$.

Choosing base station

$$\pi_{i,1}^{(j)}(n) = \hat{r}_{ij}(n) / \sum_{k=1}^{M} \hat{r}_{ik}(n)$$
$$a_{i,1}(n) \sim \pi_{i,1}(n)$$

Choosing base station

$$\pi_{i,1}^{(j)}(n) = \hat{r}_{ij}(n) / \sum_{k=1}^{M} \hat{r}_{ik}(n)$$
$$a_{i,1}(n) \sim \pi_{i,1}(n)$$

Judging satisfaction

$$v_{i}(n) = \begin{cases} 0, & h_{i}(\mathbf{a}_{i}, \mathbf{a}_{-i}) < \Gamma_{i}, \\ 1, & h_{i}(\mathbf{a}_{i}, \mathbf{a}_{-i}) \geq \Gamma_{i}. \end{cases}$$

Deciding whether to rate

•
$$v_i(n) = 0$$
:

$$\begin{cases} \pi_{i,2}^{(0)}(n) \sim \sigma_{i}(n) \alpha^{-c_{i}(0)} \\ \pi_{i,2}^{(1)}(n) \sim (1 - \sigma_{i}(n)) \alpha^{-c_{i}(1)} \end{cases}$$

Deciding whether to rate

•
$$v_i(n) = 0$$
:

$$\begin{cases} \pi_{i,2}^{(0)}(n) \sim \sigma_{i}(n) \alpha^{-c_{i}(0)} \\ \pi_{i,2}^{(1)}(n) \sim (1 - \sigma_{i}(n)) \alpha^{-c_{i}(1)} \end{cases}$$

•
$$v_i(n) = 1$$
:

$$\begin{cases} \pi_{i,2}^{(0)}(n) \sim 1 - \nu \\ \pi_{i,2}^{(1)}(n) \sim \nu \end{cases}$$

Deciding whether to rate

•
$$v_i(n) = 0$$
:

$$\begin{cases} \pi_{i,2}^{(0)}(n) \sim \sigma_{i}(n) \alpha^{-c_{i}(0)} \\ \pi_{i,2}^{(1)}(n) \sim (1 - \sigma_{i}(n)) \alpha^{-c_{i}(1)} \end{cases}$$

•
$$v_i(n) = 1$$
:

$$\begin{cases} \pi_{i,2}^{(0)}(n) \sim 1 - \nu \\ \pi_{i,2}^{(1)}(n) \sim \nu \end{cases}$$

$$a_{i,2}(n) \sim \boldsymbol{\pi}_{i,2}(n)$$

Simulation Results

(a) The number of satisfied UEs vs. the number of iteration.

(b) The utility vs. the number of iteration.

Conclusion

- We propose a novel wireless network recommendation system.
- We formulate a satisfaction game to address the tradeoff between rating or not.
- We propose an algorithm to learn the satisfaction equilibrium and perform simulations to verify it.

Thank you!

If you have any questions or suggestions, please contact: <u>mengy13@mails.tsinghua.edu.cn</u> for further discussion.