

Very-Short Term Forecasting of Electricity Price Signals Using a Pareto Composition of Kernel Machines in Smart Power Systems

Miltos Alamaniotis, Lefteri H. Tsoukalas

Applied Intelligent Systems Laboratory, School of Nuclear Engineering, Purdue University, IN

Nikolaos Bourbakis

Department of Computer Science and Engineering Wright State University, OH

3rd IEEE Global Conference on Signal and Information Processing

Outline

- Intelligent Energy Systems CIMEG-Energy Internet Methodology Kernel Machines □ Pareto Formulation Results
- Summary / Questions

Smart Power Systems

Main Components

<u>Consortium for Intelligent Management</u> of <u>Electric Grid (CIMEG)</u>

ENERGY INTERNET

- Intelligent agents:
 - Anticipate Load
- Intelligent meters
 - Negotiate with suppliers
 - Place orders
- Suppliers and generators
 - Maximize gain

<u>Picture taken from:</u> Alamaniotis, Miltiadis, Rong Gao, and Lefteri H. Tsoukalas. "Towards an energy internet: A game-theoretic approach to pricedirected energy utilization." *Energy-Efficient Computing and Networking*. Springer Berlin Heidelberg, 2011. 3-11.

- Keep power demand below optimal generation levels
- CIMEG:
 - Uses Elasticity models which can affect demand
 - Generates appropriate pricing signals
 - Allows consumers to update demand

Problem in Energy Internet

- Strategy of updating demand
 Respond with demand
 - How to modify demand?
 - What to expect from supplier?
- Need to know the electricity price signal
 - □ Prices of a very short term ahead of time horizon
- Price Signal
 - □ High fluctuation and variability
 - Dynamic

Motivation

- Very Short Term Price Forecasting
 Prices in the next few hours
 Structure of Demond Lindetee
- Strategy of Demand Updates
 Decisions based on price forecasts

- Automated method
 - Captures price dynamics
 - Develop a framework fusing different prognoses under a single umbrella

Relevance Vector Machines (RVM)

Kernel Functions Dual Formula: $k(x_1, x_2) = \varphi(x_1)^T \varphi(x_2)$ Relevance Vectors Parametric Models □ Linear Combination of Kernel Functions **RVM** Regression $y(x) = \sum_{n=1}^{\infty} w_n k(x, x_n) + b$ y(x Regression n=1Line Variance Training points for which w is not zero are called relevance vectors Х

Weights are evaluated via a Maximum Likelihood Schema

Gaussian Process for Machine Learning

In machine learning:

- Gaussian Processes are identified as the *probabilistic extension* of kernel methods
- Prior distribution over functions:
- > Predictive distribution: p(y) = N(y|0, K)

$$m(x_{N+1}) = k^T K_*^{-1} t$$

$$\sigma^{2}(x_{N+1}) = k_{*} - k^{T} K_{*N}^{-1} k$$

> with *K* being the Gram Matrix:

 $k(x_1, x_2) = \varphi(x_1)^T \varphi(x_2)$

Kernels: Dual representation:

 $K_*(x_i, x_j) = k(x_i, x_j) + \sigma_n^2 \delta_{ij}$

THE KELLING

WRIGHT STATE

Pareto Optimality

Multiobjective Optimization Problems

 $\min_{\mathbf{x}} \mathbf{C}(\mathbf{x}) = \begin{bmatrix} C_1(\mathbf{x}), C_2(\mathbf{x}), \dots, C_N(\mathbf{x}) \end{bmatrix}$ s.t. $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, k$ $g_j(\mathbf{x}) = 0, \quad j = 1, \dots, m$

A point, $\mathbf{x}^* \in \mathbf{X}$, is Pareto Optimal iff there does not exist another point, $\mathbf{x} \in \mathbf{X}$, such that $\mathbf{C}(\mathbf{x}) \leq \mathbf{C}(\mathbf{x}^*)$, and $C_i(\mathbf{x}) \leq C_i(\mathbf{x}^*)$ for at least one function.

WRIGHT STATE

•A Pareto frontier illustration where each box represents a feasible solution.

•Boxes Z and K are part of Pareto Frontier

Methodology Testing

- Signals of 12 different days
 - □ Hourly prices
 - □ Year 2001
 - □New England Area
- Predictions every two hours
 - □ Learning of the five most recent prices
- Benchmark
 - □ Autoregressive Moving Average (6,6)
 - Akaike Information Criterion (AIC)

-					PIIRDIIF
		WRIGHT STATE			
Results		68% MAE	0% MAE	16% MAE	16% MAE
Der ef 2001 Meessure		59% I heil	0% I neil	25% I neil	16% Theil
Day of 2001	Measure	Forecaster			
Terrere	TT1'1	Pareto	AKMA	GP	
January		0.0035	0.0129	0.0063	0.0049
8	MAE	15.8586	30.2036	29.1646	21.4047
February	Theil	0.0133	0.0196	0.010/	0.0111
10	MAE	14.6037	20.3070	17.8090	18.7168
March	Theil	0.0240	0.0188	0.0048	0.0033
15	MAE	12.0693	20.260	10.5353	6.5426
April	Theil	0.0058	0.0217	0.0125	0.0119
9	MAE	9.6789	22.5575	14.6272	11.1888
May	Theil	0.0050	0.0129	0.0097	0.0079
21	MAE	10.0982	29.625	17.0409	12.2382
June	Theil	0.0033	0.0212	0.0083	0.0057
15	MAE	6.7777	22.74	14.4733	8.1808
July	Theil	0.0018	0.0325	0.0040	0.0063
28	MAE	2.1970	14.10	2.6915	4.6468
August	Theil	0.0024	0.0150	0.0056	0.0036
8	MAE	8.6252	32.5762	19.1358	10.5478
September	Theil	0.0040	0.0240	0.0066	0.0038
19	MAE	5.3471	25.0196	9.4242	4.7013
October	Theil	0.0068	0.0352	0.0060	0.0125
11	MAE	3.2056	13.8017	2.7463	8.0050
November	Theil	0.0039	0.0271	0.0038	0.0072
14	MAE	3.5177	10.1411	3.2308	5.8209
December	Theil	0.0058	0.0367	0.0116	0.0208
20	MAE	2.9191	19.2865	4.6741	10.1673

Future Work

Testing of model □ Larger price datasets Extending model □ Various kernels □ Validation and testing Modify multiobjective problems □ Higher dimension (e.g. use of MAPE)

Conclusions

Energy Internet

□ Negotiation among entities

□ Forecasting is fundamental

Price Forecasting Method

□ Kernel machines: GP, RVM

□ Pareto Optimality: MAE, Theil

Results of Pareto Forecasting Method

- □ Testing on real world prices
- □ Most accurate than ARMA, GP, RVM

Acknowledgement

The work is supported by US National Science Foundation in collaboration with Air Force Office of Scientific Research under grant no 1462393

Thanks for your Attention

Questions?

Comments?