
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
Cambridge, Massachusetts

Edge-enhancing filters with negative weights

Andrew Knyazev (knyazev@merl.com)

c©MERL Monday, December 14, 2015 1 / 16



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline:

• Traditional graph-based filter via graph Laplacian

• Iterated filter as the power method

• Traditional graph Laplacian and the mass-spring model

• 1D signals, cosine transform, and vibration modes of a string

• Low frequency eigenmodes with flat ends need sharpening

• Negative weights in the adjacency matrix as repulsion

• Edge-preserving vs. edge-enhancing 1D filter performance

• Conclusions

• Future work

The main claim:
Negative weights in the adjacency matrix used for graph-based
edge-preserving signal smoothing enhance the edges in the signal!
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Traditional graph-based filter via graph Laplacian

A discrete function x[j], j ∈ {1, 2, . . . , N}, is an input signal to filter.
The output signal y[i] is a weighted average of the signal values x[j]:

y[i] =
∑
j

wij∑
j wij

x[j].

The weights wij ≥ 0 are the entries of a symmetric matrix W , which is
interpreted as an adjacency matrix of a graph. Let D be the diagonal
matrix with the non-zero diagonal entries di =

∑
j wij . The filter can

then be equivalently written as the following vector transform

y = D−1Wx.

The symmetric nonnegative definite matrix L = D −W is called the
(graph) Laplacian, and D−1L = I −D−1W in the normalized Laplacian,

y = x−D−1Lx.

Bilateral, guided, and total variation filters can be written in this form.
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Iterated filter as the power method

The filter transform y = D−1Wx can be applied iteratively,

xi+1 = D−1Wxi, i = 0, 1, . . . ,m <∞,

which is the so-called power method. Two options:

1 Linear filter: using some fixed weights, calculated from a guidance
signal, for all iterations.

2 Nonlinear filter: updating the weights wij at least at some iterations
using the result of the previous iterations.

In the linear case, the iterative matrix F = D−1W is fixed and
diagonalizable, thus, the power method mathematically gives

xm = (F )m x0 = Σj µ
m
j

(
vTj Dx0

)
vj ,

where 1 = |µ1| ≥ |µ2| ≥ . . . are the eigenvalues of the matrix D−1W
corresponding to the eigenvectors vj , i.e. it suppresses the noisy part of
the signal—contributions corresponding to the smallest eigenvalues µ.
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Traditional graph Laplacian and the mass-spring model I

Possible simple setup for 2D imaging using a guidance signal g,

Bilateral Filter

wij = exp
(
− (g[i]−g[j])2

2σ2
r

)
Spring stiffness

kij = wij

Pixels/masses i and j that are weakly correlated, i.e. with very different
values g[i] and g[j], are weakly connected, i.e. the corresponding graph
weight wij/spring stiffness kij is relatively small.
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Traditional graph Laplacian and the mass-spring model II

The eigenvectors of the graph Laplacian are mathematically the same as
the eigenmodes of the transversal vibrations of the mass-spring system!

mass

equilibrium plane 

springs   

springs 

transverse direction 

masses
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1D signals, cosine transform, and vibration modes of a string I

Take a scalar signal on a one-dimensional uniform grid, where the
weights wij are computed only for the nearest neighbors and set to zero
otherwise. Let us start with a constant guidance signal g, with
g[i]− g[j] = 0. Then, wi−1 i = wi i = wi i+1 = 1 and the graph Laplacian
L = D −W , based on g, is the following tridiagonal matrix

L =


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1


This is a standard three-point-stencil finite-difference approximation of
the negative second derivative of functions with homogeneous Neumann
boundary conditions, i.e. vanishing first derivatives at the end points of
the interval. This is a discrete model of a string with free ends.
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1D signals, cosine transform, and vibration modes of a string II

Eigenvectors of the Laplacian in this case are the basis vectors of the
Discrete Cosine Transform (DCT). Displayed below are the first five low
frequency eigenmodes (the eigenvectors corresponding to the smallest
eigenvalues) of L—these are vibration modes of a detached string.

The graph-based bilateral
denoising filter turns into the
classical DCT low-pass filter
in this example.
Notice that the end points of
the eigenmodes are flat—the
ends of the string are free,
i.e. not attached.

c©MERL Monday, December 14, 2015 8 / 16



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Low frequency eigenmodes with flat ends need sharpening I

Next, we consider a piece-wise constant guidance signal, where g[i] is
very different from g[i+ 1] = 0 for some index i. BF weights change,
there is now a very small value wi i+1 = wi+1 i for some index i, keeping
all other entries of the matrix W the same as before. Low frequency
eigenmodes of L react to such a change in the adjacency matrix W :

The eigenmodes now have a
jump between the indexes i
and i+ 1, leading to the
edge preserving denoising
low-pass filter, as we want.
The end points of the
eigenmodes are flat at the
jump, since the 2 sub-strings
are barely attached.
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Low frequency eigenmodes with flat ends need sharpening II

Let us check it out, using iterated BF and CG BF, as the previous talk:
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The end points of the
eigenmodes are flat at every
jump in the signal, no matter
if the signal is flat or has
sharp corners at the jump.
Thus, the sharp corners are
difficult to keep sharp while
denoising the signal.

To better reproduce the
corners, we need to sharpen
the flat ends of the
eigenmodes at the jump.
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Low frequency eigenmodes with flat ends need sharpening III

Back to the drawing board, let us use the mass-spring model and
intuition. Notice that the standard model uses only attractive springs.

Attractive spring+

-

displacement

equilibriumstate 
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Negative weights in the adjacency matrix as repulsion I

Let us substitute one attractive spring with a repulsive spring!

repulsive spring

displacement

equilibriumstate 
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Negative weights in the adjacency matrix as repulsion II

A repulsive spring corresponds to a negative edge weight in the graph,
connecting (repulsing, we must say) the two corresponding vertices.
The flat ends of the string eigenmodes (left panel) turn upwards and now
form sharp corners (right panel, wi i+1 = wi+1 i = −0.05)! Great! Voila!

Idea: use negative graph weights at the points of the signal jumps to
enhance the edges in the denoised signal by graph-based low-pass filters.
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Edge-preserving vs. edge-enhancing 1D filter performance

50 100 150 200 250 300 350 400 450

s
ig

n
a
l

-0.2

0

0.2

0.4

0.6

0.8

1
 clean

 noisy PSNR = 20.1526

 BF.   PSNR = 30.4771

 CG.   PSNR = 33.3156

50 100 150 200 250 300 350 400 450

s
ig

n
a
l 
e
rr

o
r

-0.1

-0.05

0

0.05

0.1
   error BF

  error CG

50 100 150 200 250 300 350 400 450

s
ig

n
a
l

-0.2

0

0.2

0.4

0.6

0.8

1
 clean

 noisy PSNR = 20.1526

 BF.   PSNR = 33.8821

 CG.   PSNR = 34.1034

50 100 150 200 250 300 350 400 450

s
ig

n
a
l 
e
rr

o
r

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
   error BF

  error CG

Dramatic improvement both in PSNR and edge matching!
Full disclosure: the negative weights are hand-tuned −2 · 10−3, −10−3,
and −10−8 at the known jumps i = 100, 250, and 350, correspondingly.
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Conclusions

• The novel concept of negative graph weights introduced

• Connection made to the standard mass-spring model, but with some
springs repulsive rather than attractive

• The influence of negative weights on the shapes of the
“low-frequency” eigenvectors of the graph Laplacian explained by
comparing to mass-spring vibration modes

• Repulsing springs/negative weights result in sharpening of the
otherwise flat ends of the eigenvectors at the interface of the jump
in the guidance signal, used to generate the weights, i.e., the entries
of the graph adjacency matrix

• Negative weights in low-pass graph-based signal filters can
dramatically improve edge matching, especially sharp corners

• Negative weights appear naturally as correlations for vector signals
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Future work

• Specific formulas for calculating the negative graph weights for
scalar and vector signals

• Testing and use in applications

• Implications of negative graph weights for spectral clustering

Thank you!
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