
Rapid Customization of
Image Processors Using
Halide

Ville Korhonen, Pekka Jääskeläinen,
Matias Koskela, Timo Viitanen, and
Jarmo Takala
Tampere University of Technology,
Finland

Motivation
• Exploit custom operations in computing platform

at high abstraction level description
• avoid error-prune low-level descriptions
• maintain platform portability

• We demonstrate an dxperimental design flow
• High-abstraction level descriptions: Halide
• Processor customization: TCE toolset

Halide (MIT)
• Domain specific (image processing)

functional parallel programming language
developed at MIT

• Decoupling of algorithm and its schedule
– The same algorithm easily optimized for

different types of processors, only by
modifying the schedule

• Algorithm part requires only little knowledge
about parallel programming or parallel
compute platforms

C/C++ vs. Halide

C++ function for “blur” Halide description for “blur”

TTA-Based Co-Design
Environment (TCE) (Tampere Univ. Tech.)

12/12/15 5

• Framework for customizing processor architectures and retargetable compiler
• Exploits transport triggered architecture (TTA) template
• Supports C/C++ and OpenCL

• A research platform for customized processors, compilation techniques etc.
• MIT-licensed, available at http://tce.cs.tut.fi

TCE Screenshots

12/12/15 6

http://tce.cs.tut.fi

Custom Operations

• Custom operation (special instruction) is an
optimized atomic operation that usually wraps
up the behavior of multiple basic operations.

• Simple custom operations automatically
invoked by compiler (LLVM)
• E.g., multiply-accumulate, auto-increment in

addressing

Custom Operations

• More complex custom operations need to be
created
• Custom op created as a simulation model in TCE (for

implementation the corresponding HDL has to be
created)

• TCE generates intrinsics for the custom op and
corresponding function wrapper for Halide

• User indicates the use of custom op with extern
declaration

Halide-OpenCL Flow
Halide:
• Application compiled to

executable binary for the
target

• Application wraps the
algorithm and the schedule
into an OpenCL application
presented in LLVM IR
(OpenCL kernels included as
global strings)

• Compiles LLVM IR for the
target

(offline and online compilation
possible)

Halide-OpenCL-TCE Flow
OpenCL:
• OpenCL application uses pocl

through the OpenCL API
• pocl is our open source

implementation of OpenCL
standard:
http://pocl.sourceforge.net/

• OpenCL takes care of platform
portability, parallelism on
higher level and heterogeneity.

• pocl compiles the plain text
kernels to Workgroup functions

• pocl gathers execution times
of the kernels for profiling
purposes

Halide-OpenCL-TCE Flow
TCE:
• Processor design tools
• Custom operation definitions
• Simulation models for custom ops
• Function wrapping for custom ops
• Retargetable compiler

• adapts to changes in the
processor architecture on the fly

• Profiling tools for evaluating
performance

Experiment Case 1: Blur

• Blurs image by calculating weighted
average over adjacent pixels

• Starting point
• minimalistic scalar integer TTA processor

• Accelerated with a custom op
• weighted average

Case 1: Blur

Potential custom operation
(“*2” and “/4” are only rewiring
inside custom op)

Potential custom operation

Weighted average custom op

Custom op declaration

Custom op

Same custom op again

Case 2: Bilateral grid

• Edge preserving blur
• Starting point:

• minimalistic scalar integer + float TTA
processor

• Accelerated with custom ops:
• Blur
• 3D linear interpolation

Case 2: Bilateral grid

Potential custom op

Case 2: Bilateral grid

Linear interpolation
Original 3D linear interpolation implemented using Halide builtin function
“lerp” (1D linear interpolation)

Replaced with 3D lerp custom operation:
7 calls to lerp

Results

• Clamped blur: address computations add overhead
• Bilateral grid: histogram computations dominate

Conclusion

• We described a tool flow from high
abstraction level to customized processors

• Custom operations for increasing
performance and/or energy efficiency

• Custom operations can be used directly from
Halide descriptions

• Tool flow supports multicore custom
processors; vector support in progress

