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Background

Anti-sparse v.s. sparse representation
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Background

Anti-sparse representation

Energy evenly allocated on the entire domain

Amplitude under control

Applied in communucation systems and control systems

Vector anti-sparse representation, also known as
spread/democratic representation [Fuchs; Studer,
Goldstein, Yin, Baraniuk]

min
x∈CN

{
‖x‖∞ := max

i=1,...,N
|xi| : ‖y −Dx‖2 ≤ ε1

}
(1)

in which D ∈ CM×N is a redundant dictionary (M < N)



Background

Atomic norm (Minkowski functional)

Atomic norm of a vector x ∈ CN

‖x‖A := inf
α≥0

{
x ∈ α · conv(A)

}
A ⊂ CN : bounded symmetric set
conv(A): convex hull of A

Dual atomic norm of x ∈ CN

‖x‖∗A := sup
a∈A
〈a,x〉 (2)
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Formulation

primal problem

min
f∈CN

{
‖f‖∗A : ‖(f − f0)U‖2 ≤ ε1, ‖(f − f0)UC‖2 ≤ ε2

}
(3)

index set U ⊂ {1, 2, · · · , N}, |U | = M ≤ N
two deviation levels ε1 ≤ ε2
A := {a(ω) ∈ CN : ω ∈ Ω}
h(ω) := 〈a(ω), f〉, ω ∈ Ω

(3) equivalent to minimization of the infinite norm of h(ω)

min
f∈CN

{
‖h(ω)‖∞ : h(ω) = 〈a(ω), f〉, (4)

‖(f − f0)U‖2 ≤ ε1, ‖(f − f0)UC‖2 ≤ ε2
}
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Dual problem and bounds on solution

Lemma

The dual problem of problem (3) is

− min
z∈CN

{
ε1‖zU‖2 + ε2‖zUC‖2 −R(z∗f0) : ‖z‖A ≤ 1

}
(5)

convex hull can have semi-definite characterization



Dual problem and bounds on solution

Proposition

If ‖f0‖2 ≥ ε2 ≥ ε1, then the solution to the primal problem (3) f̂
satisfies that

‖f0‖2 − ε1 − (ε2 − ε1)
‖(f0)UC ‖2
‖f0‖2

MA
≤ ‖f̂‖∗A ≤

‖f0‖2 − ε1
mA

,

in which MA and mA are the smallest and the largest real
positive number such that ∀v ∈ CN ,

mA‖v‖2 ≤ ‖v‖A ≤MA‖v‖2.

invariant under shrinkage of A
smaller gap between the two sides, if the atomic norm ball
is more isotropic
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Dual atomic norm minimization for OFDM PAPR reduction

Define an OFDM signal s(t) with fn on the n-th sub-channel

s(t) :=

N−1∑
n=0

fne−j
2π
T
tn

A = {a(t, φ) = ejφ[1, e−j
t

2πT , · · · , e−j
t(N−1)
2πT ]T, φ ∈ [0, 2π), t ∈

[0, T )}

h(t, φ) = R
(

e−jφ
∑N−1

n=0 fne−j
nt

2πT

)
, φ ∈ [0, 2π), t ∈ [0, T )

supφ∈[0,2π) h(t, φ) =
∣∣∣∑N−1

n=0 fne−j
2πtn
T

∣∣∣ = |s(t)|

‖f‖∗A = supt,φ h(t, φ) = ‖s(t)‖∞
tone reservation (not compulsory)

U : the unreserved tones, (f0)UC = 0
ε1 small enough to control the error symbol rate
ε2 can be much larger



Dual atomic norm minimization for OFDM PAPR reduction

solution f̂ gives ŝ(t) =
∑N−1

n=0 f̂ne−jt
2πn
T

f̂n no longer a symbol, but |f̂n − f0n| for n ∈ U should be
smaller than the quantization threshold

Corollary

If ‖f0‖2 ≥ ε2 ≥ ε1 and (f0)UC = 0, then the peak-to-average ratio
of the continuous function corresponding to the solution to
problem (3) ĥ(ω, φ) = 〈a(ω, φ), f̂〉 satisfies that

‖ĥ(ω)‖∞
‖ĥ(ω)‖2

=
‖f̂‖∗A√
Nπ‖f̂‖2

≤ ‖f0‖2 − ε1
π‖f̂‖2

≤ 1

π
.
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Solving method

atomic norm as semi-definite problem

‖z‖A = inf
u∈CN,α∈R

{
1

2N
tr(Toep(u)) +

α

2
:

[
Toep(u) z

z∗ α

]
� 0

}

Toep(u): the symmetric Toeplitz matrix generated by u

due to the closeness of the constraint set,

inf
u,α

{
1

2N
tr(Toep(u)) +

α

2
:

[
Toep(u) z

z∗ α

]
� 0

}
≤ 1

is equivalent to ∃u, α such that

1

2N
tr(Toep(u)) +

α

2
≤ 1[

Toep(u) z
z∗ α

]
� 0.



Solving method

dual problem (5) transformed to

− min
z,u∈CN ,α∈R

ε1‖zU‖2 + ε2‖zUC‖2 −R(z∗f0) (6)

s.t.
1

2N
tr(Toep(u)) +

α

2
≤ 1,

[
Toep(u) z

z∗ α

]
� 0,

which can be solved by SDP

strong duality gives the primal solution

f̂U = (f0)U − ε1
ẑU
‖ẑU‖2

, f̂UC = −ε2
ẑUC

‖ẑUC‖2
. (7)
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General settings

s(t): 16 QAM OFDM signal

[f0]n, n ∈ U : uniformly randomly chosen from symbol set

PAPR: calculated by 4 times over-sampling the
transmission signal

error symbol rate: after assigning each entry of f̂ to the
nearest constellation point

reserved tones uniformly randomly chosen

ε1 =
√
EM , ε2 =

√
100(N −M)

dual problem (6) solved by SDP tool box in CVX [Grant,
Boyd]
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Atomic dual norm minimization

M = N = 32, ε1 v.s. PAPR reduced results
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regular transmission
ADmin E=0.4

first row: E = 0.1, second row: E = 0.4
left figures: constellations from 3 random trials
right figures: amplitudes of the transmission signals



Atomic dual norm minimization

10 11 12 13 14 15 16 17 18 19
10

−4

10
−3

10
−2

10
−1

10
0

PAPR[dB]

C
D

F

16QAM, N=32, M=32

 

 

E=0.2
E=0.3
E=0.4
E=0.5
E=0.6
E=0.7
regular transmission

0.2 0.3 0.4 0.5 0.6 0.7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E

er
ro

r 
ra

te
105 trials for each E from 0.2 to 0.7 with increment 0.1

left figure: cumulation density function of PAPR

right figure: cumulation density function of error symbol
rate



1 Background

2 Anti-sparse Representations for Continuous Functions by Dual
Atomic Norm
Formulation
Dual problem and bounds on solution

3 Application in OFDM Signal PAPR Reduction
Dual atomic norm minimization for OFDM PAPR reduction
Solving method

4 Numerical Experiment
Atomic dual norm minimization
Comparison with vector `∞ norm minimization



Comparison with vector `∞ norm minimization

cumulation density function of PAPR for 104 trials

vector `∞: CRAMP [Studer, Goldstein, Yin, Baraniuk]
(ε1 = 0) and INFmin (ε1 6= 0)

atomic dual norm: ADmin

N = 32, M = 29, 30, 31, 32
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Comparison with vector `∞ norm minimization

Table : error symbol rate for 104 trials. N = 32.

E=0.3 E=0.2 E=0.1 E=0

M=29 ADmin 0.0015 0 0 0

INFmin 0.0029 7.8125e-06 0 -

CRAMP - - - 0

M=30 ADmin 0.0016 9.3750e-06 0 0

INFmin 0.0024 1.9531e-05 0 -

CRAMP - - - 0

M=31 ADmin 0.0016 0 0 0

INFmin 0.0030 1.1719e-05 0 -

CRAMP - - - 0

M=32 ADmin 0.0015 3.9063e-06 0 -

INFmin 0.0021 3.9063e-06 0 -



Conclusion

Anti-sparse representation for a class of continuous
functions

Dual atomic norm minimization problem

Dual problem and bounds on solution

Application in OFDM PAPR: atom set composed of
complex exponentials, dual problem solved by SDP

Experiments in 16 QAM OFDM PAPR reduction: shows
advantages in both PAPR and error rate than the vector
`∞ method
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