Fast and Parallel Computation of the Discrete Periodic Radon Transform on PUCP
GPUs, multi-core CPUs and FPGASs ﬁ

Cesar Carranza*, Daniel Llamocca', and Marios Pattichis* THE UNIVERSITY of

*Seccion Electricidad v Electrénica, Pontificia Universidad Catolica del Peru, Lima-32, Peru NEW MEXICO

IElectrical and Computer Engineering Department, Oakland University, Rochester, MI, 48309, USA OAKLAND
UNIVERSITY.

i:)epartment ot Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA

Emails: acarran@pucp.edu.pe, llamocca@oakland.edu, pattichis@ece.unm.edu —»

Methods

Results

Abstract

The current paper presents new and eflicient algorithms for computing the DPRT The host CPU included an Intel Xeon CPU E5-2630 v3 @3.2GHz with 8 hardware

and its inverse on multi-core CPUs (FastDirDPRT') and GPUs (FastRayDPRT). tTf ﬂjf ﬂjf tTf tTf trjf tj‘f tﬁo Tf tTf Tf Tf tTf tTf Tlo Tf Tf Tf Tf’ tTf tTf cores which implemented 16 logical processors via hyper-threading. For the device,
The results provide significant evidence of the success of the new algorithms. On we used an Nvidia GPU (GeForce GTX 980, Maxwell architecture GM204). The
an 8-core CPU, with support for two threads per core, a speedup of approximately foolffo|ffoz foo fo1 foz foo fos foz card was configured using: 16 MP. 128 CUDA cores per MP, for a total of 2048
10x (up to 12.83x) is achieved. On a 2048-core GPU, a speedup in the range fo f11 12 F1.0]|f1.1]f1.2 fio f11 |12 cores@1367 MHz. For sizes up to 1471 x 1471, the DPRT and inverse DPRT
of 526 to 873 is achieved. The DPRT can be computed exactly and in real-time f2.0 |f21 T22 f2.0 |21 f22 f2.0 |21 |T22 implementations were exact using 32-bit fixed point arithmetic.
(30 frames per second) for 1471 x 1471 images on the GPU. Furthermore, the GPU fs.0|f31 132 fs.0|f31 132 fs.0 T3 |T32 10000
algorithms approximate the performance of an efficient FPGA implementation using fa0|fa|fa2 fa.0fa1 |fa2 f4.0(fa1 |fa2 _
2N parallel cores at 100MHz. fs o | f5.1 | 52 f5 0| f51 | 5.2 fs.0|f5.1|f52 g 100 -
fe,0 | fe,1| 6,2 fe,0 | fe,1| 6,2 fs,0| [f6,1/|[f6,2 :§: .
thO th1 th2 th3 th4 th5 tho thO th1 th2 th3 th4 thS tho thO th1 th2 th3 th4 thS tho %0 —FastD!rDPRT singlfe core (CPU)
Background T T T I O T R 5 oo DT muth<ore (70|
0.0001 — FastRayDPRT (GPU) i
N < INO 0 OO MM VO S N dAa oo AN N O S S ISNMNAN O A N 0 M N
The DPRT of f(z,7), is defined using [1]: ToT e ﬂ:m”;g:si:re (:x:,r' i:p;:e; cennReseeg

N-1
>, fla,(d+mi)y), 0 <m < N,
1=0 a
R(m,d) = 3
N-1 g
f(d,j), m =N < 0.01 == FastDirDPRT multi-core (CPU)
— . | 017 FastScaleDPRT (FPGA -
And for the DPRT. 7= For the FastRayDPRT and FastRayinvDPRT, the main idea behind the fast —F:ZtR(:;ISPRT ((éPU))
HETOT VHE TLVELSE Fv_ _ computation of the rays is to use Row-major memory accesses for synchronized, 00008 - e e L L L Ty
. 1 : : : arallel thread execution. In this example, the input image is assumed to be of YT eSSl rnIITIANANCIONRIIRORD O O
f(%]) — N ZR(TTL, <] _mZ>N)_S+R(N’Z) ' p P o P - i - Image size (NxN, in pixels) -
N — size 7 X 7. For each step, a red square highlights the pixel being accessed. For 8 /NP
where § — Zd:N—l R(0, d) each thread, we use distinct grayscale shade to identify the pixels that need to be Performance comparisons between CPU, GPU and FPGA implementations [1].
=0 ’ accessed. The FPGA implementation can be found in [1].
CORE DEVICE (GPU)
N Multiprocessor Mp
DispatCh or Multiproce’ssor2 ° ° COHCIUSIOH
JL T Computational complexity (GPU)
Floating nstruction Uni . .
Poht g instruction Unit The success of the proposed algorithms has been demonstrated in the results. Ap-
| p— . . lications of the DPRT for convolutions |2| is also presented at ICIP 2018.
< <> A 'i S i e i Let p be the number of processors (p = Mp - Np). Then, we have: P v 2l P
sl Geue Core 1 Core 2 . a . Core Np
e B S A Latencyof Ts A x e Linear execution time O(N): Clearly, if p > N - (N + 1), we have more
oST(GPU) ot SRAM | Cache L1 1 processors than required rays to compute. Since each thread requires O(N)
A l N additions, we can compute the entire DPRT in O(N) time. References
Latency of T¢
System Memory R y v v ¢ Quadratic execution time O(N?): Similarly, if p = N, each core must
i ¢ Latency of Ty Compute N + 1 threads at a Complexity of O(N 2>‘ AsymptOtica11Y7 it p Erows as [1] C. Carranza, D. Llamocca, and M. Pattichis, “Fast and scalable computation of the forward and inverse discrete
O(N), each Processor needs to compute O(N) rays with complexity of O(NQ) periodic radon transform,” IEEE Transactions on Image Processing, vol. 25, no. 1, pp. 119-133, Jan 2016.
Core i g Core | | A > Device Memory e Cubic execution time O (Ng): For a sin gl e Processor, we have p = 1 that 2] ——, “Fast 2d convolutions and cross-correlations using scalable architectures,” IEEE Transactions on Image
Processing, vol. 26, no. 5, pp. 2230-2245, May 2017.

needs to compute all of the directions. Furthermore, if p is O(1), computational

. . 3
Fig. 1: A top level block diagram for the basic architecture. The CPU is the Host and the GPU the Device. COl’leGXIty still ELOWS as O(N)

