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Methods

Results

Abstract

The current paper presents new and eflicient algorithms for computing the DPRT The host CPU included an Intel Xeon CPU E5-2630 v3 @3.2GHz with 8 hardware

and its inverse on multi-core CPUs (FastDirDPRT') and GPUs (FastRayDPRT). tTf ﬂjf ﬂjf tTf tTf trjf tj‘f tﬁo Tf tTf Tf Tf tTf tTf Tlo Tf Tf Tf Tf’ tTf tTf cores which implemented 16 logical processors via hyper-threading. For the device,
The results provide significant evidence of the success of the new algorithms. On we used an Nvidia GPU (GeForce GTX 980, Maxwell architecture GM204). The
an 8-core CPU, with support for two threads per core, a speedup of approximately foolffo|ffoz foo fo1 foz foo fos foz card was configured using: 16 MP. 128 CUDA cores per MP, for a total of 2048
10x (up to 12.83x) is achieved. On a 2048-core GPU, a speedup in the range fo f11 12 F1.0]|f1.1]f1.2 fio f11 |12 cores@1367 MHz. For sizes up to 1471 x 1471, the DPRT and inverse DPRT
of 526 to 873 is achieved. The DPRT can be computed exactly and in real-time f2.0 |f21 T22 f2.0 |21 f22 f2.0 |21 |T22 implementations were exact using 32-bit fixed point arithmetic.
(30 frames per second) for 1471 x 1471 images on the GPU. Furthermore, the GPU fs.0|f31 132 fs.0|f31 132 fs.0 T3 |T32 10000
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And for the DPRT. 7= For the FastRayDPRT and FastRayinvDPRT, the main idea behind the fast —F:ZtR(:;ISPRT ((éPU) )
HETOT VHE TLVELSE Fv_ _ computation of the rays is to use Row-major memory accesses for synchronized, 00008 - e e L L L Ty
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where § — Zd:N—l R(0, d) each thread, we use distinct grayscale shade to identify the pixels that need to be Performance comparisons between CPU, GPU and FPGA implementations [1].
=0 ’ accessed. The FPGA implementation can be found in [1].
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needs to compute all of the directions. Furthermore, if p is O(1), computational
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Fig. 1: A top level block diagram for the basic architecture. The CPU is the Host and the GPU the Device. COl’leGXIty still ELOWS as O(N )




