ICIP 2018, Athens

Motivation of research

Observation. A block-based video codec uses the reconstructed samples for generating a prediction. When transformed via DCT, the signal tends to be concentrated in a few low-frequency components.

Compressed sensing theory. Assume a high-dimensional signal has a sparse representation in a suitable basis. Then it can be recovered from incomplete or distorted data by random linear measurements.

A question to answer. Is it possible to restore the original samples from the prediction by sparse regularization in the transform domain?

Description of the thresholding method

Initial value. Let $p \in \mathbb{R}^{M \times N}$ be the initial luma prediction. Let r_t and r_l be the reconstructed samples in the $K \leq M$ rows above and the $L \leq N$ columns to the left. Define the extended prediction $y \in \mathbb{R}^{(M+K) \times (N+L)}$ by arranging as below.

Forward transform. Map into the frequency domain via the orthogonal discrete cosine transform $W : \mathbb{R}^{(M+K) \times (N+L)} \to \mathbb{R}^{(M+K) \times (N+L)}$

$$Y = Wy.$$

Improved Prediction via Thresholding Transform Coefficients

Michael Schäfer, Jonathan Pfaff, Jennifer Rasch, Tobias Hinz, Heiko Schwarz, Tung Nguyen, Gerhard Tech, Detlev Marpe, Thomas Wiegand

Fraunhofer HHI, Video Coding & Analytics Department

Thresholding. Choose a threshold value $\tau > 0$. Set transform coefficients $Y_{11}, \ldots, Y_{(M+K),(N+L)}$ whose absolute value is less than the threshold τ to zero. Hence, the thresholded coefficients are given by

$$\hat{Y}_{ij} = \begin{cases} Y_{ij} & |Y_{ij}| \ge \tau \\ 0 & \text{otherwise} \end{cases}$$
(2)

Inverse transform. Use the inverse DCT and compute the new extended prediction signal $\hat{y} \in \mathbb{R}^{(M+K) \times (N+L)}$ as

$$\hat{y} = W^T \hat{Y}.$$

The existing prediction p is then replaced by the modified prediction $\hat{p} \in \mathbb{R}^{M \times N}$ whose entries for i = 1, ..., M and j = 1, ..., N are

$$\hat{p}_{ij} = \hat{y}_{(i+K),(j+L)}$$

Sparse regularization.

- Goal: Force the prediction to have sparse transform coefficients in accordance with the reconstructed neighborhood.
- Impact of the neighborhood: The coding gain vastly decreases when the reconstructed samples are not used (experimentally validated).
- Choice of the threshold: Different values of τ need to be tested. Take into account the range of the transform coefficients Y and the QP.

Example

Left: Original luma samples. Middle: Angular prediction with extended boundary. Right: Result of the thresholding method.

(1)

(3)

(4)

Thresholding modes

Thresholding mode	Type	Nr. of thresholds $ au$	Nr. of extension sizes (K, L)
0	no thresholding	-	_
1	use thresholding	8	4

The thresholds are set as table values, depending on the QP. The extension sizes are set as table values as well.

Experimental results in HEVC

• High-Tier, $QP \in \{22, 27, 32, 37\}$:

All Intra

Overal	-5.73%	
FoodMarket	4K UHD	-8.04%
Crosswalk	4K UHD	-6.61%
Rollercoaster	4K UHD	-5.17%
Tango	4K UHD	-4.90%
BasketballDrive	HD	-3.92%
Sequence name	Resolution	Y

• Main-Tier, $QP \in \{27, 32, 37, 42\}$:

All Intra

		1.0070
FoodMarket	4K UHD	-7.93%
Crosswalk	4K UHD	-6.79%
Rollercoaster	4K UHD	-5.55%
Tango	4K UHD	-5.02%
BasketballDrive	HD	-4.52%
Sequence name	Resolution	Y

RD plot of *Food Market*, All Intra

Fraunhofer Heinrich Hertz Institute

Random Access

Sequence name	Resolution	Y
Nebuta	4K UHD	-5.37%
Tango	4K UHD	-4.10%
Rollercoaster	4K UHD	-3.73%
Crosswalk	4K UHD	-4.43%
FoodMarket	4K UHD	-4.47%
Overall		-4.42%

Random Access

Sequence name	Resolution	Y
Nebuta	4K UHD	-5.81%
Tango	4K UHD	-3.02%
Rollercoaster	4K UHD	-2.98%
Crosswalk	4K UHD	-3.39%
FoodMarket	4K UHD	-3.25%
Overall		-3.69%